Comportamento experimental de pilares mistos tubulares circulares submetidos a força axial concêntrica / Experimental behaviour of circular concrete-filled steel tube columns under axial concentric load

Ândrey Teston Santini, Fernando Busato Ramires

Abstract


Estruturas mistas como tubulares preenchidas por concreto, oferecem inúmeros benefícios estruturais, incluindo alta resistência, resistência ao fogo, ductilidade e alta capacidade de absorção de energia. Pilares mitos possuem muitas vantagens em relação aos pilares de aço e pilares de concreto armado devido a sua alta resistência à compressão, porque a ocorrência de instabilidades locais no tubo de aço é atrasada pela restrição provocada pela presença de concreto, de mesmo modo, pela ductilidade do concreto causada pelo efeito de confinamento provocado pela presença do tubo de aço. O comportamento de um pilar misto é alterado conforme ocorre a alteração de parâmetros físicos dos materiais, parâmetros geométricos dos membros e estados de tensão. Apesar de pilares mistos tubulares circulares serem utilizados para resistir a variados esforços como compressão axial, flexão e torção, o maior uso é em forma de compressão axial concêntrica. Este artigo tem objetivo principal analisar uma ampla gama de exemplares experimentais disponíveis na bibliografia para avaliar a influência de parâmetros geométricos e mecânicos no comportamento de pilares mistos tubulares circulares, este estudo reuniu 54 referências totalizando 557 resultados de modelos submetidos a força axial concêntrica. Os parâmetros índice de esbeltez global , índice de esbeltez local , resistência do concreto  e a resistência do aço  foram analisados para verificar sua influência no desempenho estrutural de pilares mistos tubulares circulares. A novidade deste estudo é analisar uma ampla gama de exemplares experimentais em relação a fatores de influência através de padrões de desempenho existentes. Além da resistência última , parâmetros de desempenho como: índice de resistência , fator de confinamento índice de contribuição do concreto  e tensão de confinamento  foram analisados.


Keywords


pilar misto tubular circular, comportamento axial, confinamento, concreto de alto desempenho, aço de alta resistência.

References


WAGNER, Leonardo Lunkes; CORRÊA, Ana Laura Stringhini; DE FREITAS, Denizard Batista. Revisão sobre a utilização de elementos pré-fabricados. Brazilian Journal of Development, v. 6, n. 10, p. 75455-75465, 2020.

OLIVEIRA, Douglas Henrique; SOARES, Renato Alberto Brandão; SANTOS, Victor Hugo Diniz. Comparação entre as vantagens da utilização de estrutura metálica e estrutura de concreto armado./Comparison between the advantages of using metallic structure and reinforced concrete structure. Brazilian Journal of Development, v. 6, n. 4, p. 17783-17793, 2020.

KURANOVAS, Artiomas et al. Load‐bearing capacity of concrete‐filled steel columns. Journal of civil engineering and management, v. 15, n. 1, p. 21-33, 2009.

HAN, Lin-Hai; LI, Wei; BJORHOVDE, Reidar. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, v. 100, p. 211-228, 2014.

SHANMUGAM, Nandivaram Elumalai; LAKSHMI, B. State of the art report on steel–concrete composite columns. Journal of constructional steel research, v. 57, n. 10, p. 1041-1080, 2001.

ELYOUSSEF, Mostafa; ELGRIW, Muad; ABED, Farid. FE Parametric study of the Compressive Behavior of CFSTs. In: 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO). IEEE, 2019. p. 1-5. Engineering, v. 117, n. 3, p.

PANCHAL, Devang R; PATEL, Yameen. Experimental and Computational Parametric Analysis of CFST and CFFT Columns. International Journal Of Engineering And Advanced Technology, [s.l.], v. 8, n. 6, p.2701-2706, 30 ago. 2019. Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP.699-714, 1991.

SHAMS, Mohammad; SAADEGHVAZIRI, M. Ala. State of the art of concrete-filled steel tubular columns. Structural Journal, v. 94, n. 5, p. 558-571, 1997.

LEE, Seong-Hui et al. Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading. Journal of Constructional Steel Research, v. 67, n. 1, p. 1-13, 2011.

AMERICAN CONCRETE INSTITUTE (ACI). Building Code Requirements for Structural Concrete (ACI 318-14): Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14), 2014.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC). Specification for Structural Steel Buildings (AISC 360‐10), 2010.

AS/NZS2327, Composite Steel-Concrete Construction for Buildings, Standard Austalian/Standard New Zealand, 2017.

EUROPEAN COMMITTEE FOR STANDARDIZATION (CEN). Design of composite steel and concrete structures - Part 1-1: general rules and rules for buildings. EN 1994- 1-1 Eurocode 4, Brussels; 2004.

DBJ/T 13-51-2010.Technical Specifications for Concrete-Filled Steel Tubular Structures,in:DBJ,Fuzhou,2010.

ARCHITECTURAL INSTITUTE OF JAPAN (AIJ). Recommendations for design and construction of concrete filled steel tubular structures. 2001.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios (ABNT NBR 8800:2008). Rio de Janeiro, 2008

KANG, Won-Hee et al. Design strength of concrete-filled steel columns. Advanced Steel Construction, v. 11, n. 2, p. 165-184, 2015.

TAO, Zhong; WANG, Zhi-Bin; YU, Qing. Finite element modelling of concrete-filled steel stub columns under axial compression. Journal of Constructional Steel Research, v. 89, p. 121-131, 2013.

THAI, Son et al. Concrete-filled steel tubular columns: Test database, design and calibration. Journal of Constructional Steel Research, v. 157, p. 161-181, 2019.

UY, Brian. High-strength steel–concrete composite columns for buildings. Proceedings of the Institution of Civil Engineers-Structures and Buildings, v. 156, n. 1, p. 3-14, 2003.

LIEW, JY Richard; XIONG, D. X. Ultra-high strength concrete filled composite columns for multi-storey building construction. Advances in Structural Engineering, v. 15, n. 9, p. 1487-1503, 2012.

GARDNER, Noel J.; JACOBSON, E. Ronald. Structural behavior of concrete filled steel tubes. In: Journal Proceedings. 1967. p. 404-413.

KNOWLES, Robert B.; PARK, Robert. Strength of concrete filled steel columns. Journal of the structural division, 1969.

GARDNER, Noel J. Use of spiral welded steel tubes in pipe columns. In: Journal Proceedings. 1968. p. 937-942.

TOMII, Masahide. Experimental studies on concrete filled steel tubular stub columns under concentric loading. In: Proceedings of International Colloquium on Stability of Structures Under Static and Dynamic Loads, SSRC/ASCE/Washington, DC. 1977.

SAKINO, Kenji. Behavior of concrete filled steel tubular stub columns under concentric loading. In: Proceedings of the Third International Conference on Steel-Concrete Composite Structures, 1991. 9. 1991. p. 25-30.

PRION, Helmut GL; BOEHME, Jens. Beam-column behaviour of steel tubes filled with high strength concrete. Canadian journal of civil engineering, v. 21, n. 2, p. 207-218, 1994.

KATO, B. Compressive strength and deformation capacity of concrete-filled tubular stub columns (Strength and rotation capacity of concrete-filled tubular columns, Part 1). Journal of Structural and Construction Engineering, AIJ, v. 468, p. 183-191, 1995.

SCHNEIDER, Stephen P. Axially loaded concrete-filled steel tubes. Journal of structural Engineering, v. 124, n. 10, p. 1125-1138, 1998.

SAISHO, M.; ABE, T.; NAKAYA, K. Ultimate bending strength of high-strength concrete filled steel tube column. Journal of Structural and Construction Engineering, AIJ, v. 523, n. 1, p. 133-140, 1999.

KILPATRICK, Andrew E.; RANGAN, B. Vijaya. Influence of interfacial shear transfer on behavior of concrete-filled steel tubular columns. Structural Journal, v. 96, n. 4, p. 642-648, 1999.

CAMPIONE, Giuseppe et al. Strength of hollow circular steel sections filled with fibre-reinforced concrete. Canadian journal of civil engineering, v. 27, n. 2, p. 364-372, 2000.

CAMPIONE, G. et al. Behavior of fiber reinforced concrete-filled tubular columns in compression. Materials and Structures, v. 35, n. 6, p. 332-337, 2002.

O’SHEA, M. D., & BRIDGE, R. Q. Design of Circular Thin-Walled Concrete Filled Steel Tubes. Journal of Structural Engineering, 126(11), 1295–1303, 2000.

MEI, Hong et al. Confinement effects on high-strength concrete. Structural Journal, v. 98, n. 4, p. 548-553, 2001.

HUANG, C. S. et al. Axial load behavior of stiffened concrete-filled steel columns. Journal of Structural Engineering, v. 128, n. 9, p. 1222-1230, 2002.

JOHANSSON, Mathias; GYLLTOFT, Kent. Mechanical behavior of circular steel–concrete composite stub columns. Journal of structural engineering, v. 128, n. 8, p. 1073-1081, 2002.

YAMAMOTO, T.; KAWAGUCHI, J.; MORINO, S. Experimental study of the size effect on the behavior of concrete filled circular steel tube columns under axial compression. Journal of Structural and Construction Engineering, n. 561, p. 237-244, 2002.

LI, Gengying; ZHAO, Xiaohua; CHEN, Liqiang. Improve the strength of concrete-filled steel tubular columns by the use of fly ash. Cement and concrete research, v. 33, n. 5, p. 733-739, 2003.

GIAKOUMELIS, Georgios; LAM, Dennis. Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, v. 60, n. 7, p. 1049-1068, 2004.

SAKINO, Kenji et al. Behavior of centrally loaded concrete-filled steel-tube short columns. Journal of structural engineering, v. 130, n. 2, p. 180-188, 2004.

HAN, Lin-Hai; YAO, Guo-Huang. Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin-Walled Structures, v. 42, n. 9, p. 1357-1377, 2004.

FAM, Amir; QIE, Frank S.; RIZKALLA, Sami. Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads. Journal of Structural Engineering, v. 130, n. 4, p. 631-640, 2004.

GOPAL, S. Ramana; MANOHARAN, P. Devadas. Tests on fiber reinforced concrete filled steel tubular columns. Steel and Composite Structures, v. 4, n. 1, p. 37-48, 2004.

HAN, Lin-Hai; YAO, Guo-Huang; ZHAO, Xiao-Ling. Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). Journal of Constructional Steel Research, v. 61, n. 9, p. 1241-1269, 2005

ZEGHICHE, J., & CHAOUI, K. An experimental behaviour of concrete-filled steel tubular columns. Journal of Constructional Steel Research, 61(1), 53–66, 2005.

SCHNEIDER, H. (2006), “Zum tragverhalten kurzer, umschnürter, kreisförmiger, druckglieder aus ungefasertem UHFB”, Ph.D. Dissertation, University of Leipzig, Leipzig, Germany.

DE NARDIN, S.; EL DEBS, A. L. H. C. Axial load behaviour of concrete-filled steel tubular columns. Proceedings of the Institution of Civil Engineers-Structures and Buildings, v. 160, n. 1, p. 13-22, 2007.

GUPTA, P. K.; SARDA, S. M.; KUMAR, M. S. Experimental and computational study of concrete filled steel tubular columns under axial loads. Journal of Constructional Steel Research, v. 63, n. 2, p. 182-193, 2007.

YU, Zhi-wu; DING, Fa-xing; CAI, C. S. Experimental behavior of circular concrete-filled steel tube stub columns. Journal of constructional steel research, v. 63, n. 2, p. 165-174, 2007.

HAN, Lin-Hai; LIU, Wei; YANG, You-Fu. Behaviour of concrete-filled steel tubular stub columns subjected to axially local compression. Journal of Constructional Steel Research, v. 64, n. 4, p. 377-387, 2008.

YU, Qing; TAO, Zhong; WU, Ying-Xing. Experimental behaviour of high performance concrete-filled steel tubular columns. Thin-Walled Structures, v. 46, n. 4, p. 362-370, 2008.

LIEW, JY Richard; XIONG, D. X. Effect of preload on the axial capacity of concrete-filled composite columns. Journal of Constructional Steel Research, v. 65, n. 3, p. 709-722, 2009.

DE OLIVEIRA, Walter Luiz Andrade et al. Influence of concrete strength and length/diameter on the axial capacity of CFT columns. Journal of Constructional Steel Research, v. 65, n. 12, p. 2103-2110, 2009.

PEREA, T. Analytical and experimental study on slender concrete-filled steel tube columns and beam-columns. Tese (Doutorado)—Georgia Institute of Technology, Atlanta, U.S.A., 2010.

LIEW, J. Y. R.; XIONG, D. X. Experimental investigation on tubular columns infilled with ultra-high strength concrete. 2010.

LIEW, J. Y. R.; XIONG, D. X. Ultra-high strength concrete filled columns for highrise buildings. In: Proceedings of the 4th International Conference on Steel & Composite Structures, Sydney, Australia. 2010. p. 82-93.

LIAO, Fei-Yu; HAN, Lin-Hai; HE, Shan-Hu. Behavior of CFST short column and beam with initial concrete imperfection: Experiments. Journal of Constructional Steel Research, v. 67, n. 12, p. 1922-1935, 2011.

LEE, Seong-Hui et al. Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading. Journal of Constructional Steel Research, v. 67, n. 1, p. 1-13, 2011.

YANG, You-Fu; HAN, Lin-Hai. Behaviour of concrete filled steel tubular (CFST) stub columns under eccentric partial compression. Thin-Walled Structures, v. 49, n. 2, p. 379-395, 2011.

LIEW, JY Richard; XIONG, D. X. Ultra-high strength concrete filled composite columns for multi-storey building construction. Advances in Structural Engineering, v. 15, n. 9, p. 1487-1503, 2012.

Xiong, D.X. (2012), “Structural behaviour of concrete filled steel tube with high strength materials”, Ph.D. Dissertation, National University of Singapore, Singapore

XUE, Jun-Qing; BRISEGHELLA, Bruno; CHEN, Bao-Chun. Effects of debonding on circular CFST stub columns. Journal of Constructional Steel Research, v. 69, n. 1, p. 64-76, 2012.

ELLOBODY, Ehab; GHAZY, Mariam F. Experimental investigation of eccentrically loaded fibre reinforced concrete-filled stainless steel tubular columns. Journal of constructional steel research, v. 76, p. 167-176, 2012.

ABDALLA, Suliman; ABED, Farid; ALHAMAYDEH, Mohammad. Behavior of CFSTs and CCFSTs under quasi-static axial compression. Journal of Constructional Steel Research, v. 90, p. 235-244, 2013.

GULER, Soner; ÇOPUR, Alperen; AYDOGAN, Metin. Axial capacity and ductility of circular UHPC-filled steel tube columns. Magazine of concrete research, v. 65, n. 15, p. 898-905, 2013.

ABED, Farid; ALHAMAYDEH, Mohammad; ABDALLA, Suliman. Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs). Journal of Constructional Steel Research, v. 80, p. 429-439, 2013.

PORTOLÉS, J. M.; SERRA, E.; ROMERO, Manuel L. Influence of ultra-high strength infill in slender concrete-filled steel tubular columns. Journal of constructional steel research, v. 86, p. 107-114, 2013.

REN, Qing-Xin et al. Experiments on special-shaped CFST stub columns under axial compression. Journal of Constructional Steel Research, v. 98, p. 123-133, 2014.

LU, Yiyan et al. Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression. Construction and Building Materials, v. 95, p. 74-85, 2015.

EKMEKYAPAR, Talha; AL-ELIWI, Baraa JM. Experimental behaviour of circular concrete filled steel tube columns and design specifications. Thin-Walled Structures, v. 105, p. 220-230, 2016.

LIEW, JY Richard; XIONG, Mingxiang; XIONG, Dexin. Design of concrete filled tubular beam-columns with high strength steel and concrete. In: Structures. Elsevier, 2016. p. 213-226.

XIONG MX, Xiong DX and Liew JYR. Axial performance of short concrete filled steel tubes with high- and ultra-high-strength materials. Engineering Structures 136(4): 494–510, 2017.

XIONG, Ming-Xiang; XIONG, De-Xin; LIEW, JY Richard. Behaviour of steel tubular members infilled with ultra high strength concrete. Journal of Constructional Steel Research, v. 138, p. 168-183, 2017.

CHEN, Shiming et al. Structural behavior of UHPC filled steel tube columns under axial loading. Thin-Walled Structures, v. 130, p. 550-563, 2018.

GOODE, C. D. A review and analysis of over one thousand tests on concrete filled steel tube columns. In: Proceedings of 8th International Conference on Steel-Concrete Composite and Hybrid Structures, Harbin, China. 2006. p. 12-15.

WU, F. Y. Compressive behaviour of recycled concrete-filled steel tubes. College of Civil Engineering, Fuzhou University, China, 2006.

TAO, Zhong et al. Design of concrete-filled steel tubular members according to the Australian Standard AS 5100 model and calibration. Australian Journal of Structural Engineering, v. 8, n. 3, p. 197-214, 2008.

Chen ZY, Zhu JQ, Wu PG. High strength concrete and its application. Beijing: Tsinghua University Press; 1996 [in Chinese].

GE, Hanbin; USAMI, Tsutomu. Cyclic tests of concrete-filled steel box columns. Journal of structural engineering, v. 122, n. 10, p. 1169-1177, 1996.

UY, Brian; TAO, Zhong; HAN, Lin-Hai. Behaviour of short and slender concrete-filled stainless steel tubular columns. Journal of Constructional Steel Research, v. 67, n. 3, p. 360 378, 2011.

FUJIMOTO, Toshiaki et al. Behavior of eccentrically loaded concrete-filled steel tubular columns. Journal of Structural Engineering, v. 130, n. 2, p. 203-212, 2004.

TAO, Zhong; HAN, Lin-Hai; WANG, Dong-Ye. Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete. Thin-walled structures, v. 46, n. 10, p. 1113-1128, 2008.

DING, Fa-xing et al. Mechanical behavior of circular and square concrete filled steel tube stub columns under local compression. Thin-Walled Structures, v. 94, p. 155-166, 2015.

SONG, Tian-Yi; XIANG, Kai. Performance of axially-loaded concrete-filled steel tubular circular columns using ultra-high strength concrete. In: Structures. Elsevier, 2020. p. 163-176.

HAN, Lin-Hai et al. Tests on curved concrete filled steel tubular members subjected to axial compression. Journal of Constructional Steel Research, v. 67, n. 6, p. 965-976, 2011.

YE, Yong et al. Concrete-filled bimetallic tubes under axial compression: Experimental investigation. Thin-Walled Structures, v. 108, p. 321-332, 2016.

DUNDU, M. Compressive strength of circular concrete filled steel tube columns. Thin-Walled Structures, v. 56, p. 62-70, 2012.

HASKETT, Matthew et al. Evaluating the shear-friction resistance across sliding planes in concrete. Engineering Structures, v. 33, n. 4, p. 1357-1364, 2011.

LIU, Jiepeng; ZHOU, Xuhong; GAN, Dan. Effect of friction on axially loaded stub circular tubed columns. Advances in Structural Engineering, v. 19, n. 3, p. 546-559, 2016.

ROEDER, Charles W.; CAMERON, Brad; BROWN, Colin B. Composite action in concrete filled tubes. Journal of structural engineering, v. 125, n. 5, p. 477-484, 1999.

HAN, Lin-Hai; YAO, Guo-Huang. Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes. Journal of Constructional Steel Research, v. 59, n. 12, p. 1455-1475, 2003.

MUCIACCIA, Giovanni et al. Response of self-compacting concrete filled tubes under eccentric compression. Journal of Constructional Steel Research, v. 67, n. 5, p. 904-916, 2011.

TAO, Zhong et al. Bond behavior in concrete-filled steel tubes. Journal of Constructional Steel Research, v. 120, p. 81-93, 2016.

MANDER, John B.; PRIESTLEY, Michael JN; PARK, R. Theoretical stress-strain model for confined concrete. Journal of structural engineering, v. 114, n. 8, p. 1804-1826, 1988.




DOI: https://doi.org/10.34117/bjdv7n1-432

Refbacks

  • There are currently no refbacks.