Comportamento experimental de pilares mistos tubulares circulares submetidos a força axial excêntrica / Experimental behaviour of circular concrete-filled steel tube columns under axial eccentric load

Ândrey Teston Santini, Fernando Busato Ramires

Abstract


Pilares mitos possuem muitas vantagens em relação aos pilares de aço e pilares de concreto armado devido a sua alta resistência à compressão, porque a ocorrência de instabilidades locais no tubo de aço é atrasada pela restrição provocada pela presença de concreto, de mesmo modo, pela ductilidade do concreto causada pelo efeito de confinamento provocado pela presença do tubo de aço. O comportamento de um pilar misto é alterado conforme ocorre a alteração de parâmetros físicos dos materiais, parâmetros geométricos dos membros e condições de contorno. Apesar de pilares mistos tubulares circulares serem utilizados para resistir a variados esforços como compressão, flexão e torção, há um número maior de estudos avaliando modelos submetidos a força axial concêntrica. No entanto, quando um pilar está sujeito a ação simultânea de esforços axiais e flexão, caso de forças aplicadas com excentricidade, há notável perda do estado de confinamento causado pelo aumento da curvatura ao longo da seção transversal, mesmo para seções circulares. O dimensionamento neste caso é complexo causado pela interação entre força axial e momentos fletores. Este artigo tem objetivo principal analisar uma ampla gama de exemplares experimentais disponíveis na bibliografia para avaliar a influência de parâmetros geométricos e mecânicos no comportamento de pilares mistos tubulares circulares sob força axial excêntrica. Este estudo reuniu 25 referências, totalizando 274 resultados de pilares mistos tubulares circulares sob força axial excêntrica. Os parâmetros índice de esbeltez global , índice de esbeltez local , resistência do aço , resistência do concreto  e índice de excentricidade  foram analisados para verificar sua influência no desempenho estrutural de pilares mistos tubulares circulares. A novidade deste estudo é analisar uma ampla gama de exemplares experimentais em relação a fatores de influência através de padrões de desempenho existentes. Além da resistência última , parâmetros de desempenho como: índice de resistência , fator de confinamento  e índice de contribuição do concreto  foram analisados.


Keywords


pilar misto tubular circular, confinamento, concreto de alto desempenho, aço de alta resistência, excentricidade, excêntrica.

References


KURANOVAS, Artiomas et al. Load‐bearing capacity of concrete‐filled steel columns. Journal of civil engineering and management, v. 15, n. 1, p. 21-33, 2009.

HAN, Lin-Hai; LI, Wei; BJORHOVDE, Reidar. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, v. 100, p. 211-228, 2014.

OLIVEIRA, Douglas Henrique; SOARES, Renato Alberto Brandão; SANTOS, Victor Hugo Diniz. Comparação entre as vantagens da utilização de estrutura metálica e estrutura de concreto armado./Comparison between the advantages of using metallic structure and reinforced concrete structure. Brazilian Journal of Development, v. 6, n. 4, p. 17783-17793, 2020.

LEE, Seong-Hui et al. Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading. Journal of Constructional Steel Research, v. 67, n. 1, p. 1-13, 2011.

AMERICAN CONCRETE INSTITUTE (ACI). Building Code Requirements for Structural Concrete (ACI 318-14): Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14), 2014.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC). Specification for Structural Steel Buildings (AISC 360‐10), 2010.

AS/NZS2327, Composite Steel-Concrete Construction for Buildings, Standard Austalian/Standard New Zealand, 2017.

EUROPEAN COMMITTEE FOR STANDARDIZATION (CEN). Design of composite steel and concrete structures - Part 1-1: general rules and rules for buildings. EN 1994- 1-1 Eurocode 4, Brussels; 2004.

DBJ/T 13-51-2010.Technical Specifications for Concrete-Filled Steel Tubular Structures,in:DBJ,Fuzhou,2010.

ARCHITECTURAL INSTITUTE OF JAPAN (AIJ). Recommendations for design and construction of concrete filled steel tubular structures. 2001.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios (ABNT NBR 8800:2008). Rio de Janeiro, 2008

KANG, Won-Hee et al. Design strength of concrete-filled steel columns. Advanced Steel Construction, v. 11, n. 2, p. 165-184, 2015.

TAO, Zhong; WANG, Zhi-Bin; YU, Qing. Finite element modelling of concrete-filled steel stub columns under axial compression. Journal of Constructional Steel Research, v. 89, p. 121-131, 2013.

THAI, Son et al. Concrete-filled steel tubular columns: Test database, design and calibration. Journal of Constructional Steel Research, v. 157, p. 161-181, 2019.

UY, Brian. High-strength steel–concrete composite columns for buildings. Proceedings of the Institution of Civil Engineers-Structures and Buildings, v. 156, n. 1, p. 3-14, 2003.

LIEW, JY Richard; XIONG, D. X. Ultra-high strength concrete filled composite columns for multi-storey building construction. Advances in Structural Engineering, v. 15, n. 9, p. 1487-1503, 2012.

NEOGI, P. K. Concrete-filled tubular steel columns under eccentric loading. The Structural Engineer, v. 47, n. 5, p. 187-195, 1969.

RANGAN, B. Vijaya; JOYCE, Matthey. Strength of eccentrically loaded slender steel tubular columns filled with high-strength concrete. Structural Journal, v. 89, n. 6, p. 676-681, 1992.

PRION, Helmut GL; BOEHME, Jens. Beam-column behaviour of steel tubes filled with high strength concrete. Canadian journal of civil engineering, v. 21, n. 2, p. 207-218, 1994.

(a) KILPATRICK, Andrew E.; RANGAN, B. Vijaya. Influence of interfacial shear transfer on behavior of concrete-filled steel tubular columns. Structural Journal, v. 96, n. 4, p. 642-648, 1999.

(b) KILPATRICK, Andrew E.; RANGAN, B. Vijaya. Tests on high-strength concrete-filled steel tubular columns. Structural Journal, v. 96, n. 2, p. 268-274, 1999. (b)

WANG, Y. Experimental Study of High Strength Concrete Filled Circular Steel Columns. Advances in Steel Structures (ICASS ’99), 401–411. doi:10.1016/b978-008043015-7/50047-6, 1999.

O’SHEA, M. D., & BRIDGE, R. Q. Design of Circular Thin-Walled Concrete Filled Steel Tubes. Journal of Structural Engineering, 126(11), 1295–1303, 2000.

HAN, Lin-Hai; YAO, Guo-Huang. Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes. Journal of Constructional Steel Research, v. 59, n. 12, p. 1455-1475, 2003.

HAN, Lin-Hai; YAO, Guo-Huang. Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin-Walled Structures, v. 42, n. 9, p. 1357-1377, 2004.

FUJIMOTO, Toshiaki et al. Behavior of eccentrically loaded concrete-filled steel tubular columns. Journal of Structural Engineering, v. 130, n. 2, p. 203-212, 2004.

GOPAL, S. Ramana; MANOHARAN, P. Devadas. Tests on fiber reinforced concrete filled steel tubular columns. Steel and Composite Structures, v. 4, n. 1, p. 37-48, 2004.

ZEGHICHE, J., & CHAOUI, K. An experimental behaviour of concrete-filled steel tubular columns. Journal of Constructional Steel Research, 61(1), 53–66, 2005.

GOPAL, S. Ramana; MANOHARAN, P. Devadas. Experimental behaviour of eccentrically loaded slender circular hollow steel columns in-filled with fibre reinforced concrete. Journal of Constructional Steel Research, v. 62, n. 5, p. 513-520, 2006.

CHANG, Xu; HUANG, Cheng-Kui; CHEN, Ya-Juan. Mechanical performance of eccentrically loaded pre-stressing concrete filled circular steel tube columns by means of expansive cement. Engineering Structures, v. 31, n. 11, p. 2588-2597, 2009.

LEE, Seong-Hui et al. Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading. Journal of Constructional Steel Research, v. 67, n. 1, p. 1-13, 2011.

HAN, Lin-Hai et al. Tests on curved concrete filled steel tubular members subjected to axial compression. Journal of Constructional Steel Research, v. 67, n. 6, p. 965-976, 2011.

YANG, You-Fu; HAN, Lin-Hai. Behaviour of concrete filled steel tubular (CFST) stub columns under eccentric partial compression. Thin-Walled Structures, v. 49, n. 2, p. 379-395, 2011.

PORTOLÉS, J. M. et al. Experimental study of high strength concrete-filled circular tubular columns under eccentric loading. Journal of constructional steel research, v. 67, n. 4, p. 623-633, 2011. (b).

XUE, Jun-Qing; BRISEGHELLA, Bruno; CHEN, Bao-Chun. Effects of debonding on circular CFST stub columns. Journal of Constructional Steel Research, v. 69, n. 1, p. 64-76, 2012.

ELLOBODY, Ehab; GHAZY, Mariam F. Experimental investigation of eccentrically loaded fibre reinforced concrete-filled stainless steel tubular columns. Journal of constructional steel research, v. 76, p. 167-176, 2012.

PORTOLÉS, J. M.; SERRA, E.; ROMERO, Manuel L. Influence of ultra-high strength infill in slender concrete-filled steel tubular columns. Journal of constructional steel research, v. 86, p. 107-114, 2013.

HAN, Lin-Hai; YE, Yong; LIAO, Fei-Yu. Effects of core concrete initial imperfection on performance of eccentrically loaded CFST columns. Journal of Structural Engineering, v. 142, n. 12, p. 04016132, 2016.

LIEW, JY Richard; XIONG, Mingxiang; XIONG, Dexin. Design of concrete filled tubular beam-columns with high strength steel and concrete. In: Structures. Elsevier, 2016. p. 213-226.

XIONG, Ming-Xiang; XIONG, De-Xin; LIEW, JY Richard. Behaviour of steel tubular members infilled with ultra high strength concrete. Journal of Constructional Steel Research, v. 138, p. 168-183, 2017.

GOODE, C. D. A review and analysis of over one thousand tests on concrete filled steel tube columns. In: Proceedings of 8th International Conference on Steel-Concrete Composite and Hybrid Structures, Harbin, China. 2006. p. 12-15.

WU, F. Y. Compressive behaviour of recycled concrete-filled steel tubes. College of Civil Engineering, Fuzhou University, China, 2006.

TAO, Zhong et al. Design of concrete-filled steel tubular members according to the Australian Standard AS 5100 model and calibration. Australian Journal of Structural Engineering, v. 8, n. 3, p. 197-214, 2008.

Chen ZY, Zhu JQ, Wu PG. High strength concrete and its application. Beijing: Tsinghua University Press; 1996 [in Chinese].

YU, Qing; TAO, Zhong; WU, Ying-Xing. Experimental behaviour of high performance concrete-filled steel tubular columns. Thin-Walled Structures, v. 46, n. 4, p. 362-370, 2008.

GE, Hanbin; USAMI, Tsutomu. Cyclic tests of concrete-filled steel box columns. Journal of structural engineering, v. 122, n. 10, p. 1169-1177, 1996.

HAN, Lin-Hai et al. Tests on curved concrete filled steel tubular members subjected to axial compression. Journal of Constructional Steel Research, v. 67, n. 6, p. 965-976, 2011.

YE, Yong et al. Concrete-filled bimetallic tubes under axial compression: Experimental investigation. Thin-Walled Structures, v. 108, p. 321-332, 2016.

Chen ZY, Zhu JQ, Wu PG. High strength concrete and its application. Beijing: Tsinghua University Press; 1996 [in Chinese].

GULER, Soner; ÇOPUR, Alperen; AYDOGAN, Metin. Axial capacity and ductility of circular UHPC-filled steel tube columns. Magazine of concrete research, v. 65, n. 15, p. 898-905, 2013.




DOI: https://doi.org/10.34117/bjdv7n1-346

Refbacks

  • There are currently no refbacks.