Determination of profile of chlorophyll compounds in microalgae species / Determinação do perfil de compostos de clorofila em espécies de microalgas

Andrêssa S. Fernandes, Tatiele C. do Nascimento, Pricila N. Pinheiro, Eduardo Jacob-Lopes, Leila Q. Zepka

Abstract


Dentre as especialidades químicas subexploradas em microalgas, o perfil das clorofilas em diferentes espécies (Chlorella vulgaris e Aphanothece microscopica Nägeli) foi caracterizado em detalhes como o objetivo principal deste estudo. A composição das clorofilas e derivados foi determinada por HPLC-PDA-MS (APCI +). Os padrões de fragmentação característicos permitiram identificar oito compostos de clorofila diferentes. Compostos de relevância como espécies de clorofila a, clorofila b, moléculas derivadas de reações de feofitinização, epimerização e hidroxilação estiveram presentes nas espécies de microalgas. Valores substanciais de 10.734,19 e 9.121,89 μg.g-1 de peso seco foram obtidos para C. vulgaris e A. microscopica Nägeli, respectivamente. Assim, a abordagem deste estudo contribui de forma significativa para bancos de dados de composição em constituintes bioativos das espécies avaliadas. Além disso, fornecem informações que elevam a importância desses microrganismos como alternativa para obtenção de componentes de alimentos, enfatizando-os como fontes para atender as necessidades emergentes do mercado de compostos naturais.

 

 

Keywords


microalgas, cianobactérias, algas verdes, espectrometria de massa, pigmentos naturais, componentes de alimentos.

Full Text:

PDF

References


Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., Biondi, N., Tredici, M. R., Sousa, I., & Raymundo, A. (2017). Microalgae biomass as an alternative ingredient in cookies: sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal research, 26, 161-171.

Beale, S. I. (1999). Enzymes of chlorophyll biosynthesis. Photosynthesis research, 60(1), 43-73.

Bhalamurugan, G. L., Valerie, O., & Mark, L. (2018). Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research, 23(3), 229-241.

Chen, K., Ríos, J. J., Pérez-Gálvez, A., & Roca, M. (2017). Comprehensive chlorophyll composition in the main edible seaweeds. Food Chemistry, 228, 625-633.

da Silva, J. W. A., Maia, H. D., de Lima, R. L., Gomes, I. G. R. F., de Araújo, A. L. A. C., da Cruz Coelho, A. A., ... & Costa, F. H. F. (2019). Effect of sodium nitrate concentration on the lipid content of Chlorella vulgaris/Efeito da concentração de nitrato de sódio no conteúdo lipídico de Chlorella vulgaris. Brazilian Journal of Development, 5(12), 33506-33524.

De Rosso, V. V., & Mercadante, A. Z. (2007). Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, 55, 5062-5072.

Fernandes, A. S., Nogara, G. P., Menezes, C. R., Cichoski, A. J., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2017). Identification of chlorophyll molecules with peroxyl radical scavenger capacity in microalgae Phormidium autumnale using ultrasound-assisted extraction. Food Research International, 99, 1036-1041.

Ferruzzi, M. G., & Blakeslee, J. (2007). Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutrition Research, 27(1), 1-12.

Fradique, M., Batista, A. P., Nunes, M. C., Gouveia, L., Bandarra, N. M., & Raymundo, A. (2010). Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 90(10), 1656-1664.

Gauthier-Jaques, A., Bortlik, K., Hau, J., & Fay, L. B. (2001). Improved method to track chlorophyll degradation. Journal of Agricultural and Food Chemistry, 49, 1117-1122.

Giuffrida, D., Zoccali, M., Giofre, S. V., Dugo, P., & Mondello, L. (2017). Apocarotenoids determination in Capsicum chinense Jacq. cv. Habanero, by supercritical fluid chromatography-triple-quadrupole/mass spectrometry. Food chemistry, 231, 316-323.

Gouveia, L., Raymundo, A., Batista, A. P., Sousa, & I., Empis, J. (2006). Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology, 222(3-4), 362.

Gouveia, L, Batista, A. P., Miranda, A., Empis, J., & Raymundo, A. (2007). Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative Food Science & Emerging Technologies, 8(3), 433-436.

Gouveia, L., Coutinho, C., Mendonça, E., Batista, A. P., Sousa, I., Bandarra, N. M., & Raymundo, A. (2008). Functional biscuits with PUFA‐ω3 from Isochrysis galbana. Journal of the Science of Food and Agriculture, 88(5), 891-896.

Harada, J., Mizoguchi, T., Tsukatani, Y., Noguchi, M., & Tamiaki, H. (2012). A seventh bacterial chlorophyll driving a large light-harvesting antenna. Scientific reports, 2 (671), 1-5.

Huang, S.C., Hung, C.F., Wu, W.B., & Chen, B.H. (2008). Determination of chlorophylls and their derivatives in Gynostemma pentaphyllum Makino by liquid chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 48, 105-112.

Jacob-Lopes, E., Maroneze, M. M., Deprá, M. C., Sartori, R. B., Dias, R. R., & Zepka, L. Q. (2019). Bioactive food compounds from microalgae: An innovative framework on industrial biorefineries. Current Opinion in Food Science, 1, 1-7.

Kang, Y. R., Park, J., Jung, S. K., & Chang, Y. H. (2018). Synthesis, characterization, and functional properties of chlorophylls, pheophytins, and Zn-pheophytins. Food chemistry, 245, 943-950.

Kao, T. H., Chen, C. J., & Chen, B. H. (2011). An improved high performance liquid chromatography–photodiode array detection–atmospheric pressure chemical ionization–mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz. Talanta, 86, 349-355.

Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial cell factories, 17(1), 36.

Khanra, S., Mondal, M., Halder, G., Tiwari, O. N., Gayen, K., & Bhowmick, T. K. (2018). Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. Food and bioproducts processing, 110, 60-84.

Kong, W., Liu, N., Zhang, J., Yang, Q., Hua, S., Song, H., & Xia, C. (2014). Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology. Journal of food science and technology, 51(9), 2006-2013.

Kong, W., Song, H., Cao, Y., Yang, H., Hua, S., & Xia, C. (2011). The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. African Journal of Biotechnology, 10(55), 11620-11630.

Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D. T., & Show, P. L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16-24.

Lafarga, T. (2019). Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal Research, 41, 101566.

Lanfer-Marquez, U. M., Barros, R. M., & Sinnecker, P. (2005). Antioxidant activity of chlorophylls and their derivatives. Food Research International, 38(8), 885-891.

Larkin, R. M., Stefano, G., Ruckle, M. E., Stavoe, A. K., Sinkler, C. A., Brandizzi, F., Malmstrom C. M., & Osteryoung, K. W. (2016). Reduced chloroplast coverage genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment. Proceedings of the National Academy of Sciences, 113(8), E1116-E1125.

Loh, C. H., Inbaraj, B. S., Liu, M. H., Chen, B. H. (2012). Determination of chlorophylls in Taraxacum formosanum by high performance liquid chromatography-diode array detection−mass spectrometry and preparation by column chromatography. Journal of Agricultural and Food Chemistry, 60, 6108-6115.

Lohr, M., Im, C. S., & Grossman, A. R. (2005). Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiology, 138(1), 490-515.

Mandelli, F., Miranda, V. S., Rodrigues, E., & Mercadante, A. Z. (2012). Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World Journal of Microbiology and Biotechnology, 28(4), 1781-1790.

Maroneze, M. M., Siqueira, S. F., Vendruscolo, R. G., Wagner, R., de Menezes, C. R., Zepka, L. Q., & Jacob-Lopes, E. (2016). The role of photoperiods on photobioreactors–A potential strategy to reduce costs. Bioresource technology, 219, 493-499.

Maroneze, M. M., Jacob-Lopes, E., Zepka, L. Q., Roca, M., & Pérez-Gálvez, A. (2019). Esterified carotenoids as new food components in cyanobacteria. Food chemistry, 287, 295-302.

Matos, Â. P. (2017). The impact of microalgae in food science and technology. Journal of the American Oil Chemists' Society, 94(11), 1333-1350.

Mohsenpour, S. F., Richards, B., & Willoughby, N. (2012). Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresource technology, 125, 75-81.

Mulders, K. J., Lamers, P. P., Martens, D. E., & Wijffels, R. H. (2014). Phototrophic pigment production with microalgae: biological constraints and opportunities. Journal of phycology, 50(2), 229-242.

Nakamura, A., Akai, M., Yoshida, E., Taki, Y., & Watanabe, T. (2003). Reversed-phase HPLC determination of chlorophyll a and phylloquinone in Photosystem I of oxygenic photosynthetic organisms. European Journal of Biochemistry, 270, 2446–2458.

Özyurt, G., Uslu, L., Yuvka, I., Gökdoğan, S., Atci, G., Ak, B., & Işik, O. (2015). Evaluation of the cooking quality characteristics of pasta enriched with Spirulina platensis. Journal of Food Quality, 38(4), 268-272.

Palabiyik, I., Durmaz, Y., Öner, B., Toker, O. S., Coksari, G., Konar, N., & Tamtürk, F. (2018). Using spray-dried microalgae as a natural coloring agent in chewing gum: effects on color, sensory, and textural properties. Journal of applied phycology, 2 (2013), 1-9.

Patias, L. D., Fernandes, A. S., Petry, F. C., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2017). Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity. Food research international, 100, 260-266.

Pérez-Gálvez, A., Viera, I., & Roca, M. (2017). Chemistry in the bioactivity of chlorophylls: An overview. Current medicinal chemistry, 24(40), 4515-4536.

Plaza, M., Santoyo, S., Jaime, L., Avalo, B., Cifuentes, A., Reglero, G., Reina, G. G., Reina, F. J., & Ibáñez, E. (2012). Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT-Food Science and Technology, 46(1), 245-253.

Pool, E. K., Shahidi, F., Mortazavi, S. A., Azizpour, M., & Daneshzad, E. (2016). Examination of the effect of Spirulina platensis microalgae on drying kinetics and the color change of kiwifruit pastille. Journal of Food Measurement and Characterization, 10(3), 634-642.

Rahman, K. M. (2020). Food and High Value Products from Microalgae: Market Opportunities and Challenges. In Microalgae Biotechnology for Food, Health and High Value Products (pp. 3-27). Springer, Singapore.

Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1-61.

Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renewable and Sustainable Energy Reviews, 92, 394-404.

Roca, M.; Chen, K.; Pérez-Gálvez, A. Chlorophylls, In: Carle R., Schweiggert R. (Eds.), Handbook on natural pigments in food and beverages: industrial applications for improving food color. Woodhead Publishing: Cambridge, UK, 2016, pp. 125-158.

Rumin, J., Nicolau, E., Junior, R. G. D. O., Fuentes-Grünewald, C., & Picot, L. (2020). Analysis of Scientific Research Driving Microalgae Market Opportunities in Europe. Marine Drugs, 18(5), 264.

Sarkar, S., Manna, M. S., Bhowmick, T. K., & Gayen, K. (2020). Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella Thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochemistry, 96, 58-72.

Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Microalgae metabolites: A rich source for food and medicine. Saudi journal of biological sciences, 26(4), 709-722.

Solymosi, K., & Mysliwa-Kurdziel, B. (2017). Chlorophylls and their derivatives used in food industry and medicine. Mini reviews in medicinal chemistry, 17(13), 1194-1222.

Vendruscolo, R. G., Facchi, M. M. X., Maroneze, M. M., Fagundes, M. B., Cichoski, A. J., Zepka, L. Q., Barin, J. S., Jacob-Lopes, E., & Wagner, R. (2018). Polar and non-polar intracellular compounds from microalgae: Methods of simultaneous extraction, gas chromatography determination and comparative analysis. Food research international, 109, 204-212.

Xu, W., Tang, H., Wang, Y., & Chitnis, P. R. (2001). Proteins of the cyanobacterial photosystem I. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1507(1), 32-40.

Yen, H. W., Hu, I. C., Chen, C. Y., Ho, S. H., Lee, D. J., & Chang, J. S. (2013). Microalgae-based biorefinery from biofuels to natural products. Bioresource technology, 135, 166-174.

Zepka, L. Q., Jacob-Lopes, E., Goldbeck, R., & Queiroz, M. I. (2008). Production and biochemical profile of the microalgae Aphanothece microscopica Nägeli submitted to different drying conditions. Chemical Engineering and Processing: Process Intensification, 47(8), 1305-1310.

Zepka, L. Q., Jacob-Lopes, E., Goldbeck, R., Souza-Soares, L. A., & Queiroz, M. I. (2010). Nutritional evaluation of single-cell protein produced by Aphanothece microscopica Nägeli. Bioresource Technology, 101(18), 7107-7111.




DOI: https://doi.org/10.34117/bjdv7n1-295

Refbacks

  • There are currently no refbacks.