Morphological evaluation of macrophage infected with Toxoplasma Gondii / Avaliação morfológica de macrófagos infectados com Toxoplasma Gondii

Gabriella Oliveira Alves Moreira de Carvalho, Olga Maria de Jesus Souza, Maria Rita do Nascimento Kiffer, Tiago Alexandre Silva Nascimento, Thiago Manchester de Mello, Regina Coeli dos Santos Goldenberg, Sérgio Henrique Seabra, Fabio da Silva de Azevedo Fortes

Abstract


O Toxoplasma gondii é o parasita causador da toxoplasmose, doença negligenciada que ainda carece de estudos que visem elucidar a relação entre a parasitemia e o sistema imunológico. Uma das principais células do sistema imunológico são os macrófagos e estes possuem linhagens celulares imortalizadas que fornecem um modelo de estudo acessível para experimentos in vitro . Com isso, este trabalho pretende enfatizar a importância da linhagem de macrófagos J774G8 em estudos com protozoários, destacando a viabilidade e alterações morfológicas da cultura de células infectadas com Toxoplasma gondii .


Keywords


Macrophages, J774G8 cell line, cell culture, Toxoplasma gondii.

Full Text:

PDF

References


BUDDHIRONGAWATR, Ruangrat et al. Detection of Toxolasma gondii in captive wild felids. Southeast Asian journal of tropical medicine and public health, v. 37, p. 15, 2006.

CHANG, K. P. Human cutaneous lieshmania in a mouse macrophage line: propagation and isolation of intracellular parasites. Science, v. 209, n. 4462, p. 1240-1242, 1980.

CLOUGH, Barbara; FRICKEL, Eva-Maria. The toxoplasma parasitophorous vacuole: an evolving host–parasite frontier. Trends in parasitology, v. 33, n. 6, p. 473-488, 2017.

DA CRUZ PADRÃO, Juliana et al. Toxoplasma gondii infection of activated J774-A1 macrophages causes inducible nitric oxide synthase degradation by the proteasome pathway. Parasitology international, v. 63, n. 5, p. 659-663, 2014.

DELGADO BETANCOURT, Estefania et al. From entry to early dissemination—Toxoplasma gondii's initial encounter with its host. Frontiers in cellular and infection microbiology, v. 9, p. 46, 2019.

DÖŞKAYA, M. E. R. T. et al. Behaviour of Toxoplasma gondii RH Ankara strain tachyzoites during continuous production in various cell lines. Parasitology, v. 132, n. 3, p. 315-319, 2006.

DUBEY, J. P. et al. Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology. Parasitology, v. 139, n. 11, p. 1375, 2012.

EVANS, R. et al. Cell-culture system for continuous production of Toxoplasma gondii tachyzoites. European Journal of Clinical Microbiology and Infectious Diseases, v. 18, n. 12, p. 879-884, 1999.

GOEBEL, Stefan; GROSS, Uwe; LÜDER, Carsten GK. Inhibition of host cell apoptosis by Toxoplasma gondii is accompanied by reduced activation of the caspase cascade and alterations of poly (ADP-ribose) polymerase expression. Journal of Cell Science, v. 114, n. 19, p. 3495-3505, 2001.

GUIMARÃES, Erick Vaz; DE CARVALHO, Laís; SANTOS BARBOSA, Helene. Primary culture of skeletal muscle cells as a model for studies of Toxoplasma gondii cystogenesis. Journal of Parasitology, v. 94, n. 1, p. 72-83, 2008.

JABARI, Sahar et al. In vitro culture of Toxoplasma gondii in HeLa, Vero, RBK and A549 cell lines. LE INFEZIONI IN MEDICINA, p. 145, 2018.

KELLER, Philine et al. Direct inhibition of cytochrome c-induced caspase activation in vitro by Toxoplasma gondii reveals novel mechanisms of interference with host cell apoptosis. FEMS microbiology letters, v. 258, n. 2, p. 312-319, 2006.

LIMA, Tatiane S.; LODOEN, Melissa B. Mechanisms of human innate immune evasion by Toxoplasma gondii. Frontiers in Cellular and Infection Microbiology, v. 9, p. 103, 2019.

LÜDER, Carsten GK; RAHMAN, Taibur. Impact of the host on Toxoplasma stage differentiation. Microbial Cell, v. 4, n. 7, p. 203, 2017.

MATTA, Sumit K. et al. NADPH oxidase and guanylate binding protein 5 restrict survival of avirulent type III strains of Toxoplasma gondii in naive macrophages. MBio, v. 9, n. 4, 2018.

MOLESTINA, Robert E.; EL‐GUENDY, Nadia; SINAI, Anthony P. Infection with Toxoplasma gondii results in dysregulation of the host cell cycle. Cellular microbiology, v. 10, n. 5, p. 1153-1165, 2008.

MONTOYA, J. G.; LIESENFELD, O. Toxoplasmosis Lancet. 2004; 363: 1965–1976. doi: 10.1016. S0140-6736 (04).

ONG, Yi-Ching; REESE, Michael L.; BOOTHROYD, John C. Toxoplasma rhoptry protein 16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6. Journal of Biological Chemistry, v. 285, n. 37, p. 28731-28740, 2010.

REZAEI, Fatemeh et al. miR-20a inhibition using locked nucleic acid (LNA) technology and its effects on apoptosis of human macrophages infected by Toxoplasma gondii RH strain. Microbial pathogenesis, v. 121, p. 269-276, 2018.

SEABRA, Sergio H.; DE SOUZA, Wanderley; DAMATTA, Renato A. Toxoplasma gondii exposes phosphatidylserine inducing a TGF-β1 autocrine effect orchestrating macrophage evasion. Biochemical and biophysical research communications, v. 324, n. 2, p. 744-752, 2004.

SICA, Antonio et al. Macrophage polarization in pathology. Cellular and molecular life sciences, v. 72, n. 21, p. 4111-4126, 2015.

TALABANI, H. et al. Factors of occurrence of ocular toxoplasmosis. A review. Parasite, v. 17, n. 3, p. 177-182, 2010.

UNKELESS, Jay C. et al. Fc-receptor variants of a mouse macrophage cell line. Proceedings of the National Academy of Sciences, v. 76, n. 3, p. 1400-1404, 1979.

WILSON, CHRISTOPHER B.; TSAI, V. J. S. R.; REMINGTON, JACK S. Failure to trigger the oxidative metabolic burst by normal macrophages: possible mechanism for survival of intracellular pathogens. The Journal of experimental medicine, v. 151, n. 2, p. 328-346, 1980.




DOI: https://doi.org/10.34117/bjdv7n1-273

Refbacks

  • There are currently no refbacks.