Síntese de Carbon Dots a partir de derivados de anilina a fim de avaliar o efeito dos substituintes nas propriedades fotofísicas e estruturais / Synthesis of Carbon Dots from aniline derivatives in order to evaluate the effect of substituents on photophysical and structural properties
Abstract
Os carbon dots (C-dots) são nanopartículas de carbono luminescentes, biocompatíveis, solúveis em água e que podem ser obtidos a partir de vários precursores, incluindo as moléculas orgânicas. As propriedades fotofísicas e estruturais dos C-dots são dependentes de vários parâmetros sintéticos, a exemplo do uso de diferentes solventes e reagentes/dopantes moleculares. Diante disso, foram sintetizados C-dots pelo método hidrotermal a partir da o-fenildiamina (o-PD) e do o-aminotiofenol (o-ATP), dopados com nitrogênio e codopados com nitrogênio (N) e enxofre (S), respectivamente, a fim de se verificar a influência desses átomos nas suas propriedades fotofísicas e estruturais. Os C-oATP e C-oPD exibiram emissão de fluorescência no azul e laranja sob irradiação UV (365 nm), e distribuição de tamanho médio de 3,06 e 3,62 nm, respectivamente. As análises de FTIR e UV-Vis dos C-dots evidenciaram a influência dos dopantes em suas estruturas, as quais exibiram grupos sulfurados e/ou nitrogenados na superfície dependendo da molécula precursora. Os C-oPD apresentaram uma banda de absorção em 434 nm caraterística de grupos nitrogenados de derivados de anilina. As propriedades fotofísicas também foram influenciadas pelos dopantes, em que os C-oPD exibiram emissão dual em 385 nm e 560 nm quando excitados na faixa de 260 até 340 nm e uma emissão fixa em 560 nm quando excitados em maiores comprimentos de onda de excitação (λExc) (360-500 nm). Por outro lado, os C-oATP codopados com N e S exibiram emissão dependente da excitação centrada no azul, evidenciando um deslocamento hipsocrômico. Por fim, o presente estudo promoveu a inserção de C-dots dopados, com emissão dual como promissores para aplicações em sensores raciométricos de diversos analitos ambientais e biológicos.
Keywords
Full Text:
PDF (Português (Brasil))References
Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736–12737. https://doi.org/10.1021/ja040082h.
Wu, Z. L., Liu, Z. X., & Yuan, Y. H. (2017). Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. Journal of Materials Chemistry B, 5(21), 3794–3809, https://doi.org/10.1039/C7TB00363C.
Zhan, Q.; Tan, C.; Su, X.; Zhou, C.; Wang, B.; He, S. (2017). Acid-assisted hydrothermal synthesis of red fluorescent carbon dots for sensitive detection of Fe( iii ). RSC Advances, 7(65), 40952–40956, https://doi.org/10.1039/C7RA06223K.
Zhang Z, Pan Y, Fang Y, Zhang L, Chen J and Yi C. (2016). Tuning photoluminescence and surface properties of carbon nanodots for chemical sensing. Nanoscale, 8(1), 500-507, https://doi.org/10.1039/C5NR06534H.
Bao, L., Liu, C., Zhang, Z.-L., & Pang, D.-W. (2015). Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Advanced Materials, 27(10), 1663–1667. https://doi.org/10.1002/adma.201405070.
Qu, Z., Zhou, X., Gu, L., Lan, R., Sun, D., Yu, D., & Shi, G. (2013). Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate. Chemical Communications, 49(84), 9830, https://doi.org/10.1039/C3CC44393K.
Vaz, R., Vieira, K. O., Machado, C. E., Ferrari, J. L., & Schiavon, M. A. (2015). Preparation of carbon dots and their optical characterization: An experiment of nanoscience for undergraduate course. Química Nova. https://doi.org/10.5935/0100-4042.20150150.
Ahmad, K., Pal, A., Pan, Onu, Chattopadhyay, A., & Paul, A. (2018). Synthesis of single-particle level white-light-emitting carbon dots via a one-step microwave method. Journal of Materials Chemistry C, 25(6), 6691-6697, https://doi.org/10.1039/C8TC01276H.
Lin, S., Lin, C., Ele, M., Yuan, R., Zhang, Y., Zhou, Y., & Liang, X. (2017). Solvatochromism of bright carbon dots with tunable long-wavelength emission from green to red and their application as solid-state materials for warm WLEDs. RSC Advances, 7(66), 41552-41560, https://doi.org/10.1039/C7RA07736J.
Gu, J., Li, X., Zhou, Z., Liu, W., Li, K., Gao, J., Zhao, Y., & Wang, Q. (2019). 2D MnO 2 nanosheets generated signal transduction with 0D carbon quantum dots: Synthesis strategy, dual-mode behavior and glucose detection. Nanoscale, 11 (27), 13058-13068. https://doi.org/10.1039/C9NR03583D.
Wang, J., Zhu, Y., & Wang, L. (2019). Synthesis and applications of red-emissive carbon dots. The Chemical Record, 19 (10), 2083–2094. https://doi.org/10.1002/tcr.201800172.
Yan, F., Sun, Z., Zhang, H., Sun, X., Jiang, Y., & Bai, Z. (2019). The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review. Microchimica Acta, 186 (8), 583. https://doi.org/10.1007/s00604-019-3688-y.
Dai, B., Wu, C., Lu, Y., Deng, D., & Xu, S. (2017). Synthesis and formation mechanism of s-doped carbon dots from low-molecule-weight organics. Journal of Luminescence, 190, 108-114.https://doi.org/10.1016/j.jlumin.2017.04.054.
Hu, Y., Yang, J., Tian, J., Jia, L., & Yu, J.-S. (2014). Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbono, 77, 775-782. https://doi.org/10.1016/j.carbon.2014.05.081.
Zhou, W., Zhuang, J., Li, W., Hu, C., Lei, B., & Liu, Y. (2017). Towards efficient dual-emissive carbon dots through sulfur and nitrogen co-doped. Journal of Materials Chemistry C, 5 (32), 8014–8021. https://doi.org/10.1039/C7TC01819C.
Zhang, X., Fan, H., Zhang, Y., Wang, X., & Zhang, C. (2020). A minireview on doped carbon dots for photocatalytic and electrocatalytic applications. Nanoscale, 12 (26), 13899–13906. https://doi.org/10.1039/D0NR03163A.
Kou, X., Jiang, S., Park, S.-J., & Meng, L.-Y. (2020). A review: Recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton Transactions, 49 (21), 6915–6938. https://doi.org/10.1039/D0DT01004A.
Gharat, P. M., Chethodil, J. M., Srivastava, A. P., P. K., P., Pal, H., & Dutta Choudhury, S. (2019). An insight into the molecular and surface state photoluminescence of carbon dots revealed through solvent-induced modulations in their excitation wavelength dependent emission properties. Photochemical & Photobiological Sciences, 18(1), 110–119. https://doi.org/10.1039/C8PP00373D .
Deng, Z., Liu, C., Jin, Y., Pu, J., Wang, B., & Chen, J. (2019). High quantum yield blue- and orange-emitting carbon dots: One-step microwave synthesis and applications as fluorescent films and in fingerprint and cellular imaging. The Analyst, 144(15), 4569–4574. https://doi.org/10.1039/C9AN00672A
Shah, H., Xin, Q., Jia, X., & Gong, J. R. (2019). Single precursor-based luminescent nitrogen-doped carbon dots and their application for iron (Iii) sensing. Arabian Journal of Chemistry, 12(7), 1083–1091. https://doi.org/10.1016/j.arabjc.2019.06.004.
Dong, Y., Pang, H., Yang, HB, Guo, C., Shao, J., Chi, Y., Li, CM, & Yu, T. (2013). Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angewandte Chemie International Edition, 52 (30), 7800–7804. https://doi.org/10.1002/anie.201301114.
Tuerhong, M., Xu, Y., & Yin, X.-B. (2017). Review on carbon dots and their applications. Chinese Journal of Analytical Chemistry, 45 (1), 139-150. https://doi.org/10.1016/S1872-2040(16)60990-8.
Mishra, V., Patil, A., Thakur, S., & Kesharwani, P. (2018). Carbon dots: Emerging theranostic nanoarchitectures. Drug Discovery Today, 23 (6), 1219–1232. https://doi.org/10.1016/j.drudis.2018.01.006.
Alberton, K. S., Moraes, A. B. R., Anderson, P. R., Stein, Z. T. R., Stoffes Junior, M. J., & Stein, C. R. (2020). Síntese e caracterização morfológica e estrutural de nanopartículas magnéticas de ferrita de cobalto. Brazilian Journal of Development, 6(6), 39371–39378. https://doi.org/10.34117/bjdv6n6-471.
Niu, W.-J., Li, Y., Zhu, R.-H., Shan, D., Fan, Y.-R., & Zhang, X.-J. (2015). Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging. Sensors and Actuators B: Chemical, 218, 229-236. https://doi.org/10.1016/j.snb.2015.05.006.
Emam, A. N., Loutfy, S. A., Mostafa, A. A., Awad, H., & Mohamed, M. B. (2017). Cyto-toxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids for bioimaging. RSC Advances, 7(38), 23502–23514. https://doi.org/10.1039/C7RA01423F.
Guan, Q., Su, R., Zhang, M., Zhang, R., Li, W., Wang, D., Xu, M., Fei, L., & Xu, Q. (2019). Highly fluorescent dual-emission red carbon dots and their applications in optoelectronic devices and water detection. New Journal of Chemistry, 43(7), 3050–3058. https://doi.org/10.1039/C8NJ06074F.
Castro, R. C., Soares, J. X., Ribeiro, D. S. M., & Santos, J. L. M. (2019). Dual-emission ratiometric probe combining carbon dots and CdTe quantum dots for fluorometric and visual determination of H2O2. Sensors and Actuators B: Chemical, 296, 126665. https://doi.org/10.1016/j.snb.2019.126665.
Jalili, R., & Khataee, A. (2020). Application of molecularly imprinted polymers and dual-emission carbon dots hybrid for ratiometric determination of chloramphenicol in milk. Food and Chemical Toxicology, 146, 111806. https://doi.org/10.1016/j.fct.2020.111806.
Li, B., Ma, H., Zhang, B., Qian, J., Cao, T., Feng, H., Li, W., Dong, Y., & Qin, W. (2019). Dually emitting carbon dots as fluorescent probes for ratiometric fluorescent sensing of pH values, mercury(Ii), chloride and Cr(Vi) via different mechanisms. Microchimica Acta, 186(6), 341. https://doi.org/10.1007/s00604-019-3437-2.
Long, R., Tang, C., Li, T., Tong, X., Tong, C., Guo, Y., Gao, Q., Wu, L., & Shi, S. (2020). Dual-emissive carbon dots for dual-channel ratiometric fluorometric determination of pH and mercury ion and intracellular imaging. Microchimica Acta, 187(5), 307. https://doi.org/10.1007/s00604-020-04287-7.
Lu, X., Zhang, J., Xie, Y.-N., Zhang, X., Jiang, X., Hou, X., & Wu, P. (2018). Ratiometric phosphorescent probe for thallium in serum, water, and soil samples based on long-lived, spectrally resolved, mn-doped znse quantum dots and carbon dots. Analytical Chemistry, 90 (4), 2939–2945. https://doi.org/10.1021/acs.analchem.7b05365.
Ma, Y., Cen, Y., Sohail, M., Xu, G., Wei, F., Shi, M., Xu, X., Song, Y., Ma, Y., & Hu, Q. (2017). A ratiometric fluorescence universal platform based on n, cu codoped carbon dots to detect metabolites participating in h 2 o 2 -generation reactions. ACS Applied Materials & Interfaces, 9 (38), 33011–33019. https://doi.org/10.1021/acsami.7b10548.
Reckmeier, C. J., Schneider, J., Susha, A. S., & Rogach, A. L. (2016). Luminescent colloidal carbon dots: Optical properties and effects of doping [Invited]. Optics Express, 24(2), A312. https://doi.org/10.1364/OE.24.00A312.
Kumar, A., & Kim, H.-S. (2015). N-(3-imidazolyl)propyl dansylamide as a selective Hg2+ sensor in aqueous media through electron transfer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 148, 250–254. https://doi.org/10.1016/j.saa.2015.03.091.
Wang, M., Zhang, H., Wang, C., Hu, X., & Wang, G. (2013). Direct electrosynthesis of poly-o-phenylenediamine bulk materials for supercapacitor application. Electrochimica Acta, 91, 144–151. https://doi.org/10.1016/j.electacta.2012.12.087.
DOI: https://doi.org/10.34117/bjdv7n1-186
Refbacks
- There are currently no refbacks.