Síntese de Carbon Dots a partir de derivados de anilina a fim de avaliar o efeito dos substituintes nas propriedades fotofísicas e estruturais / Synthesis of Carbon Dots from aniline derivatives in order to evaluate the effect of substituents on photophysical and structural properties

Ledja Brittes de Oliveira Davi, Dimas José da Paz Lima, Cintya D’Angeles do Espírito Santo Barbosa

Abstract


Os carbon dots (C-dots) são nanopartículas de carbono luminescentes, biocompatíveis, solúveis em água e que podem ser obtidos a partir de vários precursores, incluindo as moléculas orgânicas. As propriedades fotofísicas e estruturais dos C-dots são dependentes de vários parâmetros sintéticos, a exemplo do uso de diferentes solventes e reagentes/dopantes moleculares. Diante disso, foram sintetizados C-dots pelo método hidrotermal a partir da o-fenildiamina (o-PD) e do o-aminotiofenol (o-ATP), dopados com nitrogênio e codopados com nitrogênio (N) e enxofre (S), respectivamente, a fim de se verificar a influência desses átomos nas suas propriedades fotofísicas e estruturais. Os C-oATP e C-oPD exibiram emissão de fluorescência no azul e laranja sob irradiação UV (365 nm), e distribuição de tamanho médio de 3,06 e 3,62 nm, respectivamente. As análises de FTIR e UV-Vis dos C-dots evidenciaram a influência dos dopantes em suas estruturas, as quais exibiram grupos sulfurados e/ou nitrogenados na superfície dependendo da molécula precursora. Os C-oPD apresentaram uma banda de absorção em 434 nm caraterística de grupos nitrogenados de derivados de anilina. As propriedades fotofísicas também foram influenciadas pelos dopantes, em que os C-oPD exibiram emissão dual em 385 nm e 560 nm quando excitados na faixa de 260 até 340 nm e uma emissão fixa em 560 nm quando excitados em maiores comprimentos de onda de excitação (λExc) (360-500 nm). Por outro lado, os C-oATP codopados com N e S exibiram emissão dependente da excitação centrada no azul, evidenciando um deslocamento hipsocrômico. Por fim, o presente estudo promoveu a inserção de C-dots dopados, com emissão dual como promissores para aplicações em sensores raciométricos de diversos analitos ambientais e biológicos.


Keywords


Nanopartículas, Dopagem N, Codopagem N e S, Heteroátomos, Fluorescência, o-aminotiofenol, o-fenildiamina.

References


Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736–12737. https://doi.org/10.1021/ja040082h.

Wu, Z. L., Liu, Z. X., & Yuan, Y. H. (2017). Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. Journal of Materials Chemistry B, 5(21), 3794–3809, https://doi.org/10.1039/C7TB00363C.

Zhan, Q.; Tan, C.; Su, X.; Zhou, C.; Wang, B.; He, S. (2017). Acid-assisted hydrothermal synthesis of red fluorescent carbon dots for sensitive detection of Fe( iii ). RSC Advances, 7(65), 40952–40956, https://doi.org/10.1039/C7RA06223K.

Zhang Z, Pan Y, Fang Y, Zhang L, Chen J and Yi C. (2016). Tuning photoluminescence and surface properties of carbon nanodots for chemical sensing. Nanoscale, 8(1), 500-507, https://doi.org/10.1039/C5NR06534H.

Bao, L., Liu, C., Zhang, Z.-L., & Pang, D.-W. (2015). Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Advanced Materials, 27(10), 1663–1667. https://doi.org/10.1002/adma.201405070.

Qu, Z., Zhou, X., Gu, L., Lan, R., Sun, D., Yu, D., & Shi, G. (2013). Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate. Chemical Communications, 49(84), 9830, https://doi.org/10.1039/C3CC44393K.

Vaz, R., Vieira, K. O., Machado, C. E., Ferrari, J. L., & Schiavon, M. A. (2015). Preparation of carbon dots and their optical characterization: An experiment of nanoscience for undergraduate course. Química Nova. https://doi.org/10.5935/0100-4042.20150150.

Ahmad, K., Pal, A., Pan, Onu, Chattopadhyay, A., & Paul, A. (2018). Synthesis of single-particle level white-light-emitting carbon dots via a one-step microwave method. Journal of Materials Chemistry C, 25(6), 6691-6697, https://doi.org/10.1039/C8TC01276H.

Lin, S., Lin, C., Ele, M., Yuan, R., Zhang, Y., Zhou, Y., & Liang, X. (2017). Solvatochromism of bright carbon dots with tunable long-wavelength emission from green to red and their application as solid-state materials for warm WLEDs. RSC Advances, 7(66), 41552-41560, https://doi.org/10.1039/C7RA07736J.

Gu, J., Li, X., Zhou, Z., Liu, W., Li, K., Gao, J., Zhao, Y., & Wang, Q. (2019). 2D MnO 2 nanosheets generated signal transduction with 0D carbon quantum dots: Synthesis strategy, dual-mode behavior and glucose detection. Nanoscale, 11 (27), 13058-13068. https://doi.org/10.1039/C9NR03583D.

Wang, J., Zhu, Y., & Wang, L. (2019). Synthesis and applications of red-emissive carbon dots. The Chemical Record, 19 (10), 2083–2094. https://doi.org/10.1002/tcr.201800172.

Yan, F., Sun, Z., Zhang, H., Sun, X., Jiang, Y., & Bai, Z. (2019). The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review. Microchimica Acta, 186 (8), 583. https://doi.org/10.1007/s00604-019-3688-y.

Dai, B., Wu, C., Lu, Y., Deng, D., & Xu, S. (2017). Synthesis and formation mechanism of s-doped carbon dots from low-molecule-weight organics. Journal of Luminescence, 190, 108-114.https://doi.org/10.1016/j.jlumin.2017.04.054.

Hu, Y., Yang, J., Tian, J., Jia, L., & Yu, J.-S. (2014). Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbono, 77, 775-782. https://doi.org/10.1016/j.carbon.2014.05.081.

Zhou, W., Zhuang, J., Li, W., Hu, C., Lei, B., & Liu, Y. (2017). Towards efficient dual-emissive carbon dots through sulfur and nitrogen co-doped. Journal of Materials Chemistry C, 5 (32), 8014–8021. https://doi.org/10.1039/C7TC01819C.

Zhang, X., Fan, H., Zhang, Y., Wang, X., & Zhang, C. (2020). A minireview on doped carbon dots for photocatalytic and electrocatalytic applications. Nanoscale, 12 (26), 13899–13906. https://doi.org/10.1039/D0NR03163A.

Kou, X., Jiang, S., Park, S.-J., & Meng, L.-Y. (2020). A review: Recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton Transactions, 49 (21), 6915–6938. https://doi.org/10.1039/D0DT01004A.

Gharat, P. M., Chethodil, J. M., Srivastava, A. P., P. K., P., Pal, H., & Dutta Choudhury, S. (2019). An insight into the molecular and surface state photoluminescence of carbon dots revealed through solvent-induced modulations in their excitation wavelength dependent emission properties. Photochemical & Photobiological Sciences, 18(1), 110–119. https://doi.org/10.1039/C8PP00373D .

Deng, Z., Liu, C., Jin, Y., Pu, J., Wang, B., & Chen, J. (2019). High quantum yield blue- and orange-emitting carbon dots: One-step microwave synthesis and applications as fluorescent films and in fingerprint and cellular imaging. The Analyst, 144(15), 4569–4574. https://doi.org/10.1039/C9AN00672A

Shah, H., Xin, Q., Jia, X., & Gong, J. R. (2019). Single precursor-based luminescent nitrogen-doped carbon dots and their application for iron (Iii) sensing. Arabian Journal of Chemistry, 12(7), 1083–1091. https://doi.org/10.1016/j.arabjc.2019.06.004.

Dong, Y., Pang, H., Yang, HB, Guo, C., Shao, J., Chi, Y., Li, CM, & Yu, T. (2013). Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angewandte Chemie International Edition, 52 (30), 7800–7804. https://doi.org/10.1002/anie.201301114.

Tuerhong, M., Xu, Y., & Yin, X.-B. (2017). Review on carbon dots and their applications. Chinese Journal of Analytical Chemistry, 45 (1), 139-150. https://doi.org/10.1016/S1872-2040(16)60990-8.

Mishra, V., Patil, A., Thakur, S., & Kesharwani, P. (2018). Carbon dots: Emerging theranostic nanoarchitectures. Drug Discovery Today, 23 (6), 1219–1232. https://doi.org/10.1016/j.drudis.2018.01.006.

Alberton, K. S., Moraes, A. B. R., Anderson, P. R., Stein, Z. T. R., Stoffes Junior, M. J., & Stein, C. R. (2020). Síntese e caracterização morfológica e estrutural de nanopartículas magnéticas de ferrita de cobalto. Brazilian Journal of Development, 6(6), 39371–39378. https://doi.org/10.34117/bjdv6n6-471.

Niu, W.-J., Li, Y., Zhu, R.-H., Shan, D., Fan, Y.-R., & Zhang, X.-J. (2015). Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging. Sensors and Actuators B: Chemical, 218, 229-236. https://doi.org/10.1016/j.snb.2015.05.006.

Emam, A. N., Loutfy, S. A., Mostafa, A. A., Awad, H., & Mohamed, M. B. (2017). Cyto-toxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids for bioimaging. RSC Advances, 7(38), 23502–23514. https://doi.org/10.1039/C7RA01423F.

Guan, Q., Su, R., Zhang, M., Zhang, R., Li, W., Wang, D., Xu, M., Fei, L., & Xu, Q. (2019). Highly fluorescent dual-emission red carbon dots and their applications in optoelectronic devices and water detection. New Journal of Chemistry, 43(7), 3050–3058. https://doi.org/10.1039/C8NJ06074F.

Castro, R. C., Soares, J. X., Ribeiro, D. S. M., & Santos, J. L. M. (2019). Dual-emission ratiometric probe combining carbon dots and CdTe quantum dots for fluorometric and visual determination of H2O2. Sensors and Actuators B: Chemical, 296, 126665. https://doi.org/10.1016/j.snb.2019.126665.

Jalili, R., & Khataee, A. (2020). Application of molecularly imprinted polymers and dual-emission carbon dots hybrid for ratiometric determination of chloramphenicol in milk. Food and Chemical Toxicology, 146, 111806. https://doi.org/10.1016/j.fct.2020.111806.

Li, B., Ma, H., Zhang, B., Qian, J., Cao, T., Feng, H., Li, W., Dong, Y., & Qin, W. (2019). Dually emitting carbon dots as fluorescent probes for ratiometric fluorescent sensing of pH values, mercury(Ii), chloride and Cr(Vi) via different mechanisms. Microchimica Acta, 186(6), 341. https://doi.org/10.1007/s00604-019-3437-2.

Long, R., Tang, C., Li, T., Tong, X., Tong, C., Guo, Y., Gao, Q., Wu, L., & Shi, S. (2020). Dual-emissive carbon dots for dual-channel ratiometric fluorometric determination of pH and mercury ion and intracellular imaging. Microchimica Acta, 187(5), 307. https://doi.org/10.1007/s00604-020-04287-7.

Lu, X., Zhang, J., Xie, Y.-N., Zhang, X., Jiang, X., Hou, X., & Wu, P. (2018). Ratiometric phosphorescent probe for thallium in serum, water, and soil samples based on long-lived, spectrally resolved, mn-doped znse quantum dots and carbon dots. Analytical Chemistry, 90 (4), 2939–2945. https://doi.org/10.1021/acs.analchem.7b05365.

Ma, Y., Cen, Y., Sohail, M., Xu, G., Wei, F., Shi, M., Xu, X., Song, Y., Ma, Y., & Hu, Q. (2017). A ratiometric fluorescence universal platform based on n, cu codoped carbon dots to detect metabolites participating in h 2 o 2 -generation reactions. ACS Applied Materials & Interfaces, 9 (38), 33011–33019. https://doi.org/10.1021/acsami.7b10548.

Reckmeier, C. J., Schneider, J., Susha, A. S., & Rogach, A. L. (2016). Luminescent colloidal carbon dots: Optical properties and effects of doping [Invited]. Optics Express, 24(2), A312. https://doi.org/10.1364/OE.24.00A312.

Kumar, A., & Kim, H.-S. (2015). N-(3-imidazolyl)propyl dansylamide as a selective Hg2+ sensor in aqueous media through electron transfer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 148, 250–254. https://doi.org/10.1016/j.saa.2015.03.091.

Wang, M., Zhang, H., Wang, C., Hu, X., & Wang, G. (2013). Direct electrosynthesis of poly-o-phenylenediamine bulk materials for supercapacitor application. Electrochimica Acta, 91, 144–151. https://doi.org/10.1016/j.electacta.2012.12.087.




DOI: https://doi.org/10.34117/bjdv7n1-186

Refbacks

  • There are currently no refbacks.