Milk production and feeding behavior of lactating cows supplemented with a dry fungus fermentation product that expresses residual fibrolytic enzyme activity / Produção de leite e comportamento alimentar de vacas em lactação suplementadas com um produto de fermentação de fungo seco que expressa atividade de enzima fibrolítica residual

Joana Piagetti Noschang, Magna Fabrícia Brasil Savela, Edgard Gonçalves Malaguez, Antônio Amaral Barbosa, Francisco Augusto Burkert DelPino, Viviane Rohrig Rabassa, Marcio Nunes Corrêa, Cássio Cassal Brauner

Abstract


The aim of the study was to evaluate the effect of supplementation with a product of fermentation of dry fungi expressing residual enzymatic fibrolytic activity on the productive and behavioral performance of lactating cows. The study was carried out on a commercial dairy farm. 36 Holstein cows divided into two groups (control and supplemented) were evaluated for 23 days. The product came from a commercial source MAXFIBER® (Provita Supplements, Pinneberg / Germany) and was supplied in the amount of 10g / animal / day. The total digestibility of the mixed feed, the individual milk production, the feeding behavior in intelligent feeders (Intergado®), and the behavior of the animals were verified using cowMed animal monitoring collars (ChipInside® Technology / Santa Maria / RS / Brazil). Supplementation affected the animals' behavior, with an increase in activity time (P = 0.002) and a tendency to decrease in rumination time (P = 0.08). There was an increase in the frequency of ingestion (P = 0.001) and the duration of the meal (P = 0.001). Milk production was higher in the supplemented group (P = 0.05). The use of this additive alters the animals' behavior, reflecting an increase in milk production.

 


Keywords


dairy cattle, digestibility, precision nutrition, rumination, solid state fermentation.

Full Text:

PDF

References


ABID, K.; JABRIL, J.; BECKERS, Y.; YAICH, H.; MALEK, A.; REKHIS, J.; KAMOUN, M. Influence of adding fibrolytic enzymes on the ruminal fermentation of date palm by-products. Archives Animal Breeding, v.62, p.1-8, 2019. DOI: http://dx.doi.org/10.5194/aab-62-1-2019

ADESOGAN, A. T.; ARRIOLA, K.G.; JIANG, Y.; OYEBADE, A.; PAULA, E.M.; PECH-CERVANTES, A.A.; ROMERO, J.J. Symposium review: Technologies for improving fiber utilization. Journal of Dairy Science, v.102, p.1–30, 2019. DOI: http://dx.doi.org/10.3168/jds.2018-15334

ALLEN, M.S. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. Journal of Dairy Science, v.83, p.1598–1624, 2000. DOI: http://dx.doi.org/10.3168/jds.S0022-0302(00)75030-2

ALLEN, M.S.; BRAFORD, B.J.; OBA, M. The hepatic oxidation theory of the control of feed intake and its application to ruminants. Journal of Animal Science, v.87, p.3317–3334, 2009. DOi: http://dx.doi.org/10.2527/jas.2009-1779

ARRIOLA, K.G.; KIM, S.C.; STAPLES, C.R.; ADESOGAN, A.T. Effect of fibrolytic enzyme application to low and high concentrate diets on the performance of lactating dairy cattle. Journal of Dairy Science, v.94, p.832–841, 2011. DOi: http://dx.doi.org/10.3168/jds.2010-3424

ARRIOLA, K.G.; OLIVEIRA, A.S.; MA, Z.X.; LEAN, I.J.; GIURCANU, M.C.; ADESOGAN, A.T. A meta-analysis on the effect os dietary application of exogenous fibrolitic enzymes on the performance of dairy cow. Journal of Dairy Science, v.100, p.1-1, 2016. DOI: http://dx.doi.org/10 .3168/jds .2016 -12103.

BEAUCHEMIN, K.A.; COLOMBATTO, D.; MORGAVI, D.P. Use of exogenous fibrolytic enzymes to improve animal feed utilization by ruminants. Journal Animal of Science, v.81, p.37-47, 2003. DOI: http://dx.doi.org/10.2527/2003.8114

BORCHERS, M.R.; CHANG, Y.M.; TSAI, I.C.; WADSWORTH, B.A.; BERLEY, J.M. A validation of technologies monitoring dairy cow feeding, ruminating, and lying behaviors. Journal of Dairy Science, v.99, p.7458–7466, 2016. DOI: http://dx.doi.org/10.3168/jds.2015-10843

CARVALHO, P.C.F.; ANGUINONI, I.; MORAES, A; SOUZA, E.D.; SULC, R.M.; LANG, C.R.; FLORES, J.P.C.; LOPES, M.L.T.; DILSA, J.L.S.; CONTE, O.; WESP, C.L.; LEVIEN, R.; FONTANELI, R.S.; BAYER, C. Managing grazing animals 6 to achieve nutrient cycling and soil improvement in no-till integrated systems. Nutrient Cycling in Agroecosystems, p.259–273, 2009. DOI: http://dx.doi.org/10.1007/s10705-010-9360-x

CLEMENT, P.; GUATTEO, R.; DELABY, L.; CHANVALLON, A.; PHILIPOT, J.M.; BAREILLE, N. Short communication: added value of rumination time for the prediction of dry matter intake in lactating dairy cows. Journal of Dairy Science, v.97, p.6531–6535, 2014. DOI: http://dx.doi.org/10.3168/jds.2013-7860

DEAN, D.B.; STAPLES, C.R.; LITTELL, R.C.; KIM, S.; ADESOGAN, A.T. Effect of method of adding a fibrolytic enzyme to dairy cow diets on feed intake digestibility, milk production, ruminal fermentation, and blood metabolite. Animal Nutrition and Feed Technology, v.13, p.337–357, 2013. ISSN: 0972-2963

DEVRIES, T. Feeding Behavior, Feed Space, and Bunk Design and Management for Adult Dairy Cattle. Vet Clin Food Animal, v.35, p.61–76, 2019. DOI: http://dx.doi.org/10.1016/j.cvfa.2018.10.003

ELGHANDOUR, M.M.Y.; SALEM, A.Z.M.; GONZALEZ-RONQUILLO, M.; BÓRQUEZ, J.L.; GADO, H.M.; ODONGO N.E.; PEÑUELAS, C.G. Effects of exogenous enzymes on in vitro gas production kinetics and ruminal fermentation of four fibrous feeds. Animal Feed Science and Technology, v.179, p.46-5, 2013. DOI: http://dx.doi.org/10.1016/j.anifeedsci.2012.11.010

GADO, H.M.; SALEM, A.Z.M.; ROBINSON, P.H.; HASSAN, M. Influence of exogenous enzymes on nutrient digestibility, extent of ruminal fermentation as well as milk prodution and composition in dairy cows. Animal Feed Science and Tecnology, p.36-46, 2009. DOI: http://dx.doi.org/10.1016/j.anifeedsci.2009.07.006

HE, Z.X.; WALKER, N.D.; MCALLISTER, T.A.; YANG, W.Z. Effect of wheat dried distillers grains with solubles and fibrolytic enzymes on ruminal fermentation, digestibility, growth performance, and feeding behavior of beef cattle. Journal of Animal Science, v.93, p.1218–1228, 2015. DOI: http://dx.doi.org/10.2527/jas2014-8412

HOLTSHAUSEN, L.; CHUCH, Y.H.; GERARDO-CUERVO, H.; OBA, M.; BEAUCHEMIN, K.A. Improved milk production efficiency in early lactation dairy cattle with dietary addition of a developmental fibrolytic enzyme additive. Journal of Dairy Science, v.94, p.899–907, 2011. Doi: http://dx.doi.org/10.3168/jds.2010-3573

JOHNSTON, C.; DEVRIES, T.J. Short communication: Associations of feeding behavior and milk production in dairy cows. Journal of Dairy Science, v.101, p.3367–3373, 2018. DOI: http://dx.doi.org/10.3168/jds.2017-13743

KING, M.T.M.; DANCY, K.M.; LE BLANC, S.J.; PAJOR, E.A.; DEVRIES, T.J. Deviations in behavior and productivity data before diagnosis of health disorders in cows milked with an automated system. Journal of Dairy Science, v.100, p.1–14, 2017. DOI: http://dx.doi.org/10.3168/jds.2017-12723

KONONOFF, P.J.; HEINRICHS, A.J.; BUCKMASTER, D.R. Modification of the Penn State Particle Separator and the effects of moisture on its measurements. Journal of Dairy Science, v.86, p.1858–1863, 2003. DOI: http://dx.doi.org/10.3168/jds.S0022-0302(03)73773-4

KRAUSE, K.M.; COMBS, D.K.; BEAUCHEMIN, K.A. Effects of forage particle size and grain fermentability in midlactation cows. II. Ruminal pH and chewing activity. Journal of Dairy Science, v.85, p.1947–1957, 2002. DOI: http://dx.doi.org/10.3168/jds.S0022-0302(02)74271-9

KONDRATOVICH, L.B.; SARTURI, J.O.; HOFFMANN, C.A.; BALLOU, M.A.; TROJAN, S.J.; CAMPANILI, P.R.B. Effects of dietary exogenous fibrolytic enzymes on ruminal fermentation characteristics of beef steers fed high- and low-quality growing diets. Journal of Animal Science, v.97, p.3089–3102, 2019. DOI: http://dx.doi.org/10.1093/jas/skz165

MERTENS, D.R. Creating a system for meeting the requirements of dairy cows. Journal of Dairy Science, v.80, p.1463–1481, 1997. DOI: http://dx.doi.org/10.3168/jds.S0022-0302(97)76075-2

OH, J.; HARPER, M.; MELGAR, A.; COMPART, DMP.; HRISTOV, A.N. Effects of Saccharomyces cerevisiae-based direct-fed microbial and exogenous enzyme products on enteric methane emission and productivity in lactating dairy cows. Journal of dairy science, v.102, p.6065–6075, 2019. DOI: http://dx.doi.org/10.3168/jds.2018-15753

PETERS, A.; MEYER, U.; DANICKE, S. Effect of exogenous fibrolytic enzymes on performance and blood profile in early and mid-lactation cows. Animal Nutrition, v.1, p.229–238. 2015. DOI: http://dx.doi.org/ 0.1016/j.aninu.2015.09.001

RAN, T.; SALEEM, A.M.; SHEN, Y.; RIBEIRO, G.O.; BEAUCHEMIN, K.A.; TSANG, A.; YANG, W.; MCALLISTER, T.A. Effects of a recombinant fibrolytic enzyme on fiber digestion, ruminal fermentation, nitrogen balance, and total tract digestibility of heifers fed a high forage diet. Journal of Animal Science, v.97, p.3578-3587, 2019. DOI: http://dx.doi.org/10.1093/jas/skz216

REFAT, B.; CHRISTENSEN, D.A.; MCKINNON, J.J.; YANG, W.; BEATTIE, A.D.; MCALLISTER, T.A.; EUN, J.; ABDEL-RAHMAN, G.A.; YU, P. Effect of fibrolytic enzymes on lactational performance, feeding behavior, and digestibility in high-producing dairy cows fed a barley silage–based diet. Journal of Dairy Science, v.101, p.1-9, 2018. DOI: http://dx.doi/org/ 10.3168/jds.2017-14203

ROBLES, V.; GONZÁLEZ, L.A.; FERRET, A.; MANTECA, X.; CALSAMIGLIA, S. Effects of feeding frequency on intake, ruminal fermentation, and feeding behavior in heifers fed high-concentrate diets. Journal of Animal Science, v.85, p.2538–2547, 2007. DOI: http://dx.doi.org/10.2527/jas.2006-739

SILVA, T.H.; TAKIYA, C.S.; VENDRAMINI, T.H.A.; JESUS, E.F.; ZANFERARI, F.; RENNÓ, F.P. Effects of dietary fibrolytic enzymes on chewing time, ruminal fermentation, and performance of mid-lactating dairy cows. Journal Animal Feed Science and Technology, v.221, p.35-43, 2016. DOI: http://dx.doi.org/10.1016/j.anifeedsci.2016.08.013

SILVA, J.; CARRARA, T.V.B.; PEREIRA, M.C.S.; OLIVEIRA, C.A.; JÚNIOR, I.C.B.; WATANABE, D.H.M.W.; RIGUEIRO, A.L.N.; ARRIGONI, M.B.; MILLEN, D.D. Feedlot performance, feeding behavior and rumen morphometrics of Nellore cattle submitted to different feeding frequencies. Scientia Agricola, v.75, p.121-128, 2018. DOI: http://dx.doi.org/10.1590/1678-992x-2016-0335

SORIANI, N.; TREVISI, E.; CALAMAR, L. Relationships between rumination time, metabolic conditions, and health status in dairy cows during the transition period. Journal of Dairy Science, v.90, p.4544–4554, 2012. DOI: http://dx.doi.org/10.2527/jas.2012-5064

SUJANI, S.; SERESINHE, R.T. Exogenous enzymes in ruminant nutrition: A review. Asian Journal of Animal Science, v.93, p.85-99, 2015. DOI: http://dx.doi.org/10 .3923/ajas .2015 .85 .99

STEENSELS, M.; MALTZ, E.; BAHR, C.; BERCKMANS, D. Towards practical application of sensors for monitoring animal health: the effect of post-calving health problems on rumination duration, activity and milk yield. Journal of Dairy Research, v.84, p,132–138, 2017. DOI: http://dx.doi.org/10.1017/S0022029917000176

USDA-UNITED STATES DEPARTMENT OF AGRICULTURE. Agricultural Statistics, 2017.

TILLEY, J.M.A.; TERRY, R.A. A two-stage technique for the in vitro digestion of forage crop. Journal British Grassland Society, v.18, p.104-111, 1963. DOI: http://dx.doi.org/10.1111/j.1365-2494.1963.tb00335

VAN SOEST, P.J.; ROBERTSON, J.B.; LEWIS, B.A. Methods for dietary fiber, neutral detergent fiber, and no starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, v.74, p.3583-3597, 1991. DOI: http://dx.doi.org/10 .3168/ jds .S0022 -0302(91)78551 -2

ZILIO, E.M.C.; DEL VALLE, T.A.; GHIZZI, L.G.; TAKIYA, C.S.; DIAS, M.S.S.; NUNES, A.T.; SILVA, G.G.; RENNÓ, F.P. Effects of exogenous fibrolytic and amylolytic enzymes on ruminal fermentation and performance of mid-lactation dairy cows. Journal of Dairy Science, v.102, p.1–11, 2019. DOI: http://dx.doi.org/10.3168/jds.2018-14949




DOI: https://doi.org/10.34117/bjdv7n1-174

Refbacks

  • There are currently no refbacks.