In vitro characterization of endophytic bacteria associated with physic nut (Jatropha curcas L.) and their potential for plant-growth promotion and biocontrol / Caracterização in vitro de bactérias endofíticas associadas ao pinhão-manso (Jatropha curcas L.) e seu potencial de promoção de crescimento vegetal e biocontrole

Paula Cristiane Machado, Paulo Henrique Marques Andrade, Cristina Paiva de Sousa, Clovis Wesley Oliveira de Souza, Paulo Teixeira Lacava


The physic nut (Jatropha curcas L.) is a shrubby plant of perennial cycle, belonging to the family Euphorbiaceae, from Central America and currently vegetates spontaneously in diverse regions of the planet. The commercial interest in Brazil occurred due to the desirable characteristics of that crop as an agricultural option for renewal of the Brazilian energy base, being a promising raw material for biodiesel production. Oil plants that have a high biotechnological potential may have a genetically diverse microbial population with characteristics of promoting the growth of multifunctional plants. Plant growth-promoting endophytes (PGPE) are of biotechnological interest since they can improve the growth of several important agronomical crops. The present study aimed the biochemistry characterization of thirty-seven endophytic bacteria strains associated with J. curcas plants, with the potential of plant growth promotion. Of this total of evaluated strains, 75% showed positive results for fixation of nitrogen, 62% produced IAA in the presence of the tryptophan precursor, 32% solubilized inorganic phosphate and 35% exhibited antagonistic activities against phytopathogenic fungi (Lasiodiplodia. subglobosa, L. euphorbicola, and L. pseudotheobromae) in physic nut. To our knowledge, this is the first report of this potential of biocontrol against Lasiodiplodia species. Among the thirty-seven bacterial isolates identified by partial sequencing of the 16S gene, the presence of the genera Arthrobacter, Bacillus, Citrobacter, Curtobacterium, Enterococcus, Klebsiella, Leucobacter, Lysinibacillus, Microbacterium, Rhodococcus, and Serratia was observed. Our results indicated that the cultivable endophytic bacteria isolated from J. curcas have the potential to demonstrate multiple characteristics of PGPE in vitro and have the potential for other large-scale assays such as biofertilizer and biopesticides.




Biofertilizers, Plant growth promotion, Sustainable agriculture.

Full Text:



Abhilash, P., Srivastava, P., Jamil, S., & Singh, N. (2011). Revisited Jatropha curcas as an oil plant of multiple benefits: critical research needs and prospects for the future. Environmental Science and Pollution Research, 18(1), 127-131.

Abreu, C. S., Figueiredo, J. E. F., Oliveira, C. A., Santos, V. L., Gomes, E. A., Ribeiro, V. P., Barros, B. A., Lana, U. G. P., & Marriel, I. E. (2017). Maize endophytic bacteria as mineral phosphate solubilizers. Genetics and Molecular Research 16(1), gmr16019294.

Ahemad, M., & Kibret, M. (2014) Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University- Science, 26(1), 1-20.

Ahmad, Z., Jia, W, Lulu, C., & Wubei, D. (2017). Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Scientific Reports. 7 (1), 1777.

Aljanabi, S. M., & Martinez, I. (1997). Universal and rapid salt-extraction of high qualitygenomic DNA for PCR-based techniques. Nucleic Acids Research, 25 (22), 4692-4693.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25 (17), 3389-3402.

Araújo, W. L., Quecine, M. C., Lacava, P. T., Aguilar-Vildoso, C. I., Marcon, J., Lima, A. O. S., Kuklinsky-Sobral, J., Pizzirani-Kleiner, A. A., & Azevedo, J. L. (2014). Micro-organismos Endofíticos: Aspectos Teóricos e Práticos de Isolamento e Caracterização. 1. ed. Santarém: UFOPA, 1, p.257.

Assumpção, L. C., Lacava, P. T., Dias, A. C. F., Azevedo, J. L., & Menten, J. O. M. (2009). Diversidade e potencial biotecnológico da comunidade bacteriana endofítica de sementes de soja. Pesquisa Agropecuária Brasileira, Brasília, 44(5), 503-510.

Batista, B.D., Lacava, P.T., Ferrari, A., Teixeira-Silva, N. S., Bonatelli, M. L., Tsui, S., Mondin, M., Kitajima, E. W., Pereira, J. O., Azevedo, J. L., & Quecine, M. C. (2018). Screening of tropically derived, multi-trait plant growth- promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiological Research, 206, 33-42.

Baldani, I., Reis, V., Videira, S., Boddey, L., & Baldani, V. (2014). The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant and Soil, 384(1-2), 413-431.

Brasil. (2020). Ministério da Agricultura, Pecuária e Abastecimento. Bioinsumos: National Program for Biobased Agricultural Inputs. Disponível em:

Bric, J. M., Bostock, R. M., & Silverstone, S. E. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology, 57(2), 535-538.

Busby, P. E.; Peay, K., & Newcombe, G. (2015). Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytologist, 209(4), 1681-1692.

Castro, R. A., Dourado, M. N., Almeida, J. R., Lacava, P. T., Nave, A., Melo, I. S., Azevedo, J. L., & Quecine, M. Q. (2017). Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth. Brazilian Journal of Microbiology, 49(1), 59-66.

Chauhan, H., Bagyaraj, D.J., & Sharma, A. (2013). Plant growth promoting bacterial endophytes from sugarcane and their potential in promoting growth of the host under field conditions. Experimental Agriculture, Cambridge, 49(1):43-52.

Che J., Liu B., Ruan C., Tang J., & Huang D. (2015). Biocontrol of Lasiodiplodia theobromae, which causes black spot disease of harvested wax apple fruit, using a strain of Brevibacillus brevis FJAT-0809-GLX. Crop Protection, 67, 178-183.

Christian, N., Herre, E. A., Mejia, L. C., & Clay, K. (2017) Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proceedings of the Royal Society B, 284 (1858), 8p.

Compant, S., Duffy, B., Nowak, J., Cle´ment, C., & Barka, E. A. (2005). Use ofplant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951-4959.

Devi, K. A., Pandey, P., Sharma, G. D. (2016). Plant Growth-Promoting Endophyte Serratia marcescens AL2-16 Enhances the Growth of Achyranthes aspera L., a Medicinal Plant. HAYATI Journal of Biosciences, 23(4), 173-180.

Dhungana, S. A., & Itoh, K. (2019). Effects of Co-Inoculation of Indole-3-Acetic Acid-Producing and -Degrading Bacterial Endophytes on Plant Growth. Horticulturae, 5(1), 17.

Dubey, G, Kollah, B., Gour, V. K., Shukla, A. K., & Mohanty, S. R. (2016). Diversity of bacteria and archaea in the rhizosphere of bioenergy crop Jatropha curcas. Biotech, 6, 10p.

Edrisi, S. A., Dubey, R. K., Tripathi, V., & Bakshia M. (2015). Jatropha curcas L.: A crucified plant waiting for resurgence. Renewable & Sustainable Energy Reviews, 41, 855-862.

Harrison, J. G., & Griffin, E. A. (2020). The diversity and distribution of endophytes across biomes, plant phylogeny, and host tissues-how far have we come and where do we go from here? Environmental Microbiology, 22(6), 2107-2123.

Hazarika, D. J., Goswami, G., Gautom, Parveen, A., Das, P., Barooah, M., & Boro, R. C. (2019). Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiology, 19,71.

Heuer, H.; & Smalla, K. (1997). Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) for studying soil microbial communities. In: Elsas, J.D. Van; Trevors, J.T.; Wellington, E.M.H. (Ed.). Modern soil microbiology. New York: Marcel Dekker, p.353-373.

Jha, C. K., Annapurna, K., & Saraf, M. (2012). Isolation of Rhizobacteria from Jatropha curcas and characterization of produced ACC deaminase. Journal of Basic Microbiology, 52 (3), 285-295.

Ji, S. H., Gururani, M. A., Chun, S. C. (2014). Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research, 169(1), 83-98.

Kim, A.-Y., Shahzad, R., Kang, S.-M., Seo, C.-W., Park, Y.-G., Park, H.-J., & Lee, I.-J. (2017). IAA-producing Klebsiella variicola AY13 reprograms soybean growth during flooding stress. Journal of Crop Science and Biotechnology, 20(4), 235-242.

Kumar, P., Srivastava, V. C., & Jha, M. K. (2016). Jatropha curcas phytotomy and applications: Development as a potential biofuel plant through biotechnological advancements. Renewable and Sustainable Energy Reviews, 59(C), 818-858.

Kumar, A., & Tewari, S. K. (2015). Origin, distribution, ethnobotany and pharmacology of Jatropha curcas. Research Journal of Medicinal Plant, 9(2), 48-59.

Kusari, S., Hertweck, C., & Spiteller, M. (2012). Chemical ecology of endophytic fungi: origins of secondary metabolites. Chemistry and Biology, 19(7), 792-798.

Lacava, P. T., & Azevedo, J. L. (2014). Biological control of insect-pest and diseases by endophytes. In: Verma, V. C., Gange A. C. (eds.), Advances in Endophytic Research, Springer-Verlag, Berlin, Heidelberg, p. 231-256.

Lacava, P. T., Melo, I. S., & Pereira, J. O. (2018). Controle biológico e simbiótico de insetos-pragas e doenças por micro-organismos endofíticos. Fixação biológica de nitrogênio: fundamentos e aplicações. In: Azevedo, J. A., Pamphile, J. A., Quecine-Verdi, M. C., Lacava, P. T. (Org.). Bioteconologia Microbiana Ambiental. 1. ed. Maringá: Eduem, p. 83-104.

Lambrecht, M., Okon, Y., Vande Broek A, & Vanderleyden J. (2000). Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends in Microbiology, 8(7), 298-300.

Latha, P., & Prakasam, V. (2012). Molecular variability in Lasiodiplodia theobromae causing collar and root rot in physic nut (Jatropha curcas). Journal of Mycology and Plant Pathology 42(3), 356-360.

Laviola, B. G, Alves, A. A., Kobayashi, A. K., & Formighieri, E. F. (2015). Situação atual do pinhão-manso no Brasil e no mundo. Brasília, DF: Embrapa Agroenergia, 7p. (Embrapa Agroenergia. Comunicado técnico, 012).

Li, P., Kwok, A. H. Y., Jiang, J., Ran, T., Xu, D., Wang, W., & Leung, F. C. (2015). Comparative Genome Analyses of Serratia marcescens FS14 Reveals Its High Antagonistic Potential. PLOS ONE, 4.

Liu, P., Li, W., Hu, Z., Qin, X., Liu, G. (2019). Isolation, purification, identification, and stability of anthocyanins from Lycium ruthenicum Murr. LWT, 126, 109334.

Machado, A. R., Pinho, D. B., & Pereira, O. L. (2014) Phylogeny, identification and pathogenicity of the Botryosphaeriaceae associated with collar and root rot of the biofuel plant Jatropha curcas in Brasil, with a description of new species of Lasiodiplodia. Fungal Diversity, 67, 231-247.

Madhaiyan, M., Peng, N., Te1, N. T., Hsin, C., Lin, C., Lin, F., Reddy, C., Yan, H., & Ji1, L. (2012). Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species. Biotechnology for Biofuels, 6(1), 140.

Madhaiyan, M., Jin, T. Y., Roy, J. J., Kim, S. J., Weon, H. Y., Kwon, S. W., Ji, L. (2013). Pleomorphomonas diazotrophica sp. nov., an endophytic N-fixing bacterium isolated from root tissue of Jatropha curcas L. International Journal of Systematic and Evolutionary Microbiology, 63(Pt 7), 2477-2483.

Marquez, L. M., Redman, R. S., Rodriguez, R. J., & Roossinck, M. J. (2007). A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science, 315(5811), 513-515.

Mohanty, S. R., Dubey, G., & Kollah, B. (2017). Endophytes of Jatropha curcas promote growth of maize. Rhizosphere, 3(Pt 1), 20-28.

Moniruzzaman, M., Yaakob, Z., & Khatun, R. (2016). Biotechnology for Jatropha improvement: a worthy exploration. Renewable and Sustainable Energy Reviews 54(C), 1262-1277.

Munees, A., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 26(1), 1-20.

Nahar, K., & Ozores-Hampton, M. (2011). Jatropha: An Alternative Substitute to Fossil Fuel 1. 9p.

Olayemi, O. P., & Odedara, O. O. (2017). Screening of endophytic plant growth-promoting bacteria isolated from two Nigerian rice varieties. Nigerian Journal of Biotechnology, 33, 10.

Panaccione, D. G., Beaulieu, W. T., & Cook, D. (2014). Bioactive alkaloids in vertically transmitted fungal endophytes. Functional Ecology, 28(2), 299-314.

Qin, S., Yuan, B., Zhang, Y-J., Bian, G-K., Tamura, T., Sun, B-Z., Li, W-J., & Jiang, J-H. (2012). Nocardioides panzhihuaensis sp. nov., a novel endophytic actinomycete isolated from medicinal plant Jatropha curcas L. Antonie Van Leeuwenhoek, 102(2), 353-360.

Qin, S., Miao, Q., Feng, W.-W., Wang, Y., Zhu, X., Xing, K., & Jiang, J.-H. (2015). Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil. Applied Soil Ecology, 93, 47–55.

Rajamanikyam, M., Vadlapudi, V., Amanchy, R., & Upadhyayula, S. M. (2017). Endophytic Fungi as Novel Resources of natural Therapeutics. Brazilian Archives of Biology and Technology, 60, e17160542.

Reis Junior, F. B. Dos Mendes, I. De C., & Hungria, M. (2018). Fixação biológica de nitrogênio: fundamentos e aplicações. In: Azevedo, J. A., Pamphile, J. A., Quecine-Verdi, M. C., Lacava, P. T. (Org.). Biotecnologia: microbiana ambiental. Maringá: Eduem, p. 125-152.

Rodrigues, A. A., Forzani, M. V., Soares, R. S., Sibov, S. T, & Viera, J. D. G. (2016). Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesquisa Agropecuária Tropical, 46(2), 149-158.

Rodriguez, R. J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y., & Redman, R. S. (2008). Stress tolerance in plants via habitat‐adapted symbiosis. International Society of Microbial Ecology 2(4), 404-416.

Sajitha, K. L., Maria Florence, E. J., & Dev, S. A. (2014). Screening of bacterial biocontrols against sapstain fungus (Lasiodiplodia theobromae Pat.) of rubberwood (Hevea brasiliensis Muell. Arg.). Research in Microbiology, 165(7), 541-548.

Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda, M. C., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92-9.

Sarwar, M., & Kremer, R. J. (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology, 20(5), 282-285.

Shahzad, R., Khan, A. L., Bilal, S., Asaf, S., & Lee, I. (2017). Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. Lycopersici in tomato. PeerJ Chemistry Journals, 5, e3107.

Silva, C. S., Araújo, R. G. V., Lima, J. R. B., Santos, T. M. C., Nascimento, M. S., Montaldo, Y., & Silva, J. M. (2019). Resistence induction in Brassica oleracea var. acephala to Xanthomonas campestris pv. campestris and growth promotion by endophytic bacteria. Brazilian Journal of Development, 5(10), 22401-22414.

Silva, J. A., Matos, D. L., David, G. Q., Ramalho, A. B., & Peres, W. M. (2015). Biocontrole in vitro de Lasiodiplodia theobromae por isolados de Trichoderma spp. Cáceres, 2(1), 444-449.

Silva Filho, G. N., & Vidor, C. (2000). Solubilização de fosfato por microrganismos na presença de fontes de carbono. Revista brasileira de Ciência do Solo, 24, 311-319.

Sobral, J.K., Marcon, J., Lima, A.O.S., & Lacava, P.T. (2014). Aspectos gerais de micro-organismos endofíticos. In: Araújo, W.L., Quecine, M.C., Lacava, P.T., Aguilar-Vildoso, C.I., Marcon, J., Lima, A.O.S., Sobral, J.K., Pizzirani-Kleiner, A.A., Azevedo, J.L. (Ed.). Micro-organismos endofíticos: aspectos teóricos e práticos de isolamento e caracterização. Santarém: UFOPA, p. 11-27.

Tavares, S. C. C. H. (1995). Principais doenças e alternativas de controle. In: Embrapa. Informações técnicas sobre a cultura da manga no Semiárido brasileiro. Brasília, p. 123-156.

Compant S, Duffy B, Nowak J, Cle

´ment C, Barka EA (2005) Use of

plant growth-promoting bacteria for biocontrol of plant diseases:

principles, mechanisms of action, and future prospects. Appl

Environ Microbiol 71:4951–4959

Compant S, Duffy B, Nowak J, Cle

´ment C, Barka EA (2005) Use of

plant growth-promoting bacteria for biocontrol of plant diseases:

principles, mechanisms of action, and future prospects. Appl

Environ Microbiol 71:4951–4959

Christian N, Whitaker BK, Clay K (2015) Microbiomes: unifying

animal and plant systems through the lens of community ecology

theory. Front Microbiol 6:869.

Compant S, Duffy B, Nowak J, Cle

´ment C, Barka EA (2005) Use of

plant growth-promoting bacteria for biocontrol of plant diseases:

principles, mechanisms of action, and future prospects. Appl

Environ Microbiol 71:4951–4959

Arnold A, Mejia L, Kyllo D, Rojas E, Maynard Z, Robbins N, Herre

E (2003) Fungal endophytes limit pathogen damage in a tropical

tree. Proc Natl Acad Sci 100:15649–15654

Trinh CS, Lee H, Lee WJ, Lee SJ, Chung N, Han J, Kim J, Hong SW, & Lee H. (2018). Evaluation of the plant growth-promoting activity of Pseudomonas nitroreducens in Arabidopsis thaliana and Lactuca sativa. Plant Cell Reports 37(6), 873-885.

Verma, S. C., Ladha, J. K., & Tripathi, A. K. (2001). Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep-water rice. Journal of Biotechnology, 91(2-3), 127-141.

Yadav A., & Yadav K. (2019). Plant Growth-Promoting Endophytic Bacteria and Their Potential to Improve Agricultural Crop Yields. In: Singh D., Prabha R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore, p. 143-169.



  • There are currently no refbacks.