Antimicrobial evaluation of gelatin–based films incorporated with chitosan in the conservation of fish fillets / Avaliação antimicrobiana de filmes à base de gelatina incorporados com quitosano na conservação de filtes de peixe

Fernanda Saraiva Gomes Brazeiro, Camila Ramão Contessa, Luciano dos Santos Almeida, Jaqueline Motta de Moura, Caroline Costa Moraes, Catarina Motta De Moura


Materials obtained from biodegradable polymers can be an alternative to reduce the environmental impact caused by petroleum–derived polymers. Materials of different origins have been considered as a raw material with technical and economic feasibility for the development of packaging films. However, it is required that these alternative materials, in addition to being biodegradable, have beneficial properties in food preservation. In this context, biodegradable films based on fish gelatin, and fish gelatin with chitosan incorporation, were prepared and characterized in terms of their mechanical properties (tensile strength (TS) and elongation (E)), permeation (WVP), and antimicrobial activity in the conservation of tilapia fillets (Tilapia rendalli). Regarding the mechanical and permeation properties, the results showed that the incorporation of chitosan to the gelatin films promotes an increase in TS and E, and a reduction in WVP. As for the antimicrobial property in the conservation of tilapia fillets, both films showed satisfactory activity against the pathogenic microorganism Staphylococcus aureus. These results indicate that fish gelatin–based films with chitosan incorporation are promising as active packaging in the conservation of fish fillets.


biodegradable films, active packaging, Staphylococcus aureus.

Full Text:



GUILLARD, V., GAUCEL, S., FORNACIARI, C., ANGELLIER–COUSSY, H., BUCHE, P., GONTARD, N. (2018) The Next Generation of Sustainable Food Packaging to Preserve Our Environment in a Circular Economy Context. Frontiers in Nutrition, 5:121. doi: 10.3389/fnut.2018.00121.

ÇAKMAK, H., ÖZSELEK, Y., TURAN, O. Y., FIRATLIGIL, E., GÜLER, F. K. (2020). Whey protein isolate edible films incorporated with essential oils: Antimicrobial activity and barrier properties. Polymer Degradation and Stability, Pre–proof. doi:10.1016/j.polymdegradstab.2020.109285.

MARSH, K., & BUGUSU, B. (2007). Food Packaging – Roles, Materials, and Environmental Issues. Journal of Food Science, v. 72, p. 39–55. doi: 10.1111/j.1750–3841.2007.00301.x.

KOSHY, R. R., MARY, S. K., THOMAS, S., & POTHAN, L. A. (2015). Environment friendly green composites based on soy protein isolate – A review. Food Hydrocolloids, v. 50, p. 174–192. doi: 10.1016/j.foodhyd.2015.04.023.

WITTAYA, T. (2012). Protein–Based Edible Films: Characteristics and Improvement of Properties. Structure and Function of Food Engineering. Chapter 3, p. 43–70. doi: 10.5772/48167.

REGO, J. A. R., COSTA, M. L., BRASIL, D. S. B., CRUZ, J. N., COSTA, C. M. L., SANTANA, E. B., FURTADO, S. V., LOPES, A. S. (2020). Characterization and Evaluation of Filmogenic,Polymeric,and Biofilm Suspension Properties of Cassava Starch Base (Manihot esculenta Crantz). Plastici–zed with Polyols. Brazilian Journal of Developed, v. 6, n. 7, p. 50417–50442. doi:10.34117/ bjdv6n7–626.

PÉREZ–CÓRDOBA, L. J., NORTON, I. T., BATCHELOR, H. K., GKATZIONIS, K., SPYROPOULOS, F., & SOBRAL, P. J. A. (2018). Physico–chemical, antimicrobial and antioxidant properties of gelatin–chitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocolloids, v. 79, p. 544–559. doi:10.1016/j.foodhyd.2017.12.012.

PRIYADARSHI, R., & RHIM, J.–W. (2020). Chitosan–based biodegradable functional films for food packaging applications. Innovative Food Science & Emerging Technologies, 102346. doi:10.1016/j.ifset.2020.102346.

FRANCO, P. C. I.; FARIA, M. L.; BILCK, A. P.; SOARES, E. A. (2020). Antimicrobial activity and characterization of cassava/chitosan starch films reinforced with sugar cane fibers. Brazilian Journal of Developed, v. 6, n. 2, p. 8766–8779. doi:10.34117/bjdv6n2–257.

BAPTISTA, R. C., HORITA, C. N., & SANT’ANA, A. S. (2019). Natural products with preservative properties for enhancing the microbiological safety and extending the shelf–life of seafood: a review. Food Research International, 108762. doi:10.1016/j.foodres.2019.108762.

MOURA, J. M., FARIAS, B. S., RODRIGUES, D. A. S., MOURA, C. M., DOTTO, G. L., PINTO, L. A. A. (2015). Preparation of Chitosan with Different Characteristics and Its Application for Biofilms Production. Journal of Polymers and the Environment, v. 23, p. 470–477. doi: 10.1007/s10924–015–0730–y.

OLIVEIRA, F. A. DE, NETO, O. C., SANTOS, L. M. R. DOS, FERREIRA, E. H. R., & ROSENTHAL, A. (2017). Effect of high pressure on fish meat quality – A review. Trends in Food Science & Technology, v. 66, p. 1–19. doi:10.1016/j.tifs.2017.04.014.

THARANATHAN, R. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, v. 14, p. 71–78. doi:10.1016/s0924–2244(02)00280–7.

Bandeira, S. F., Silva, R. D. S. G., Moura, J. M., & Pinto, L. A. A. (2015). Modified Gelatin Films from Croaker Skins. Effects of pH, and Addition of Glycerol and Chitosan. Journal of Food Process Engineering, v. 38, p. 613–620. doi:10.1111/jfpe.12191.

ASTM. (2000a). ASTM. Standard test methods for tensile properties on thin plastic sheeting. In. In ASTM annual book of ASTM standards (pp. 160–168). Philadelphia. American Society for Testing and Materials.

ASTM. (2000b). Standard Test Methods for Water Vapor Transmission of Materials. In ASTM annual book of ASTM standards (pp. 907–914). Philadelphia. American Society for Testing and Materials.

LI, X., ANTON, N., ARPAGAUS, C., BELLETEIX, F., & VANDAMME, T. F. (2010). Nanoparticles by spray drying using innovative new technology. The Büchi Nano Spray Dryer B–90. Journal of Controlled Release, v. 147, p. 304–310. doi: 10.1016/j.jconrel.2010.07.113.

TALLENT, S., HAIT, J., BENNETT, R. W., LANCETTE, G. A. (2016). Food and Drug Administration (FDA). Chapter 12: Staphylococcus aureus. In: Bacteriological Analytical Manual (BAM). Accessed Sep. 2020. Available in:–methods–food/bam–chapter–12–staphylococcus–aureus.

CAZÓN, P., VELAZQUEZ, G., RAMÍREZ, J. A., & VÁZQUEZ, M. (2017). Polysaccharide–based films and coatings for food packaging: A review. Food Hydrocolloids, v. 68, p. 136–148. doi:10.1016/j.foodhyd.2016.09.009.

SIRACUSA, V. (2012). Food Packaging Permeability Behaviour: A Report. International Journal of Polymer Science, p. 1–11. doi:10.1155/2012/302029.

COUTINHO, F. M. B., MELLO, I. L., & MARIA, L. C. S. (2003). Polietileno. principais tipos, propriedades e aplicações. Polímeros, v. 13, p. 01–13. doi:10.1590/S0104– 14282003.

DIAS, M. V., MEDEIROS, H. S., SOARES, N. F. F., MELO, N. R., BORGES, S. V., CARNEIRO, J. D. S., & PEREIRA, J. M. T. A. K. (2013). Development of low–density polyethylene films with lemon aroma. LWT – Food Science and Technology, v. 50, p. 167–171. doi:10.1016/j.lwt.2012.06.005.

MATIACEVICH, S., CELIS COFRÉ, D., SCHEBOR, C., & ENRIONE, J. (2013). Physicochemical and antimicrobial properties of bovine and salmon gelatin–chitosan films. CyTA – Journal of Food, v. 11, p. 366–378. doi:10.1080/19476337.2013.773564 1016/j.lwt.2012.06.005 000100005.

PEREDA, M., PONCE, A. G., MARCOVICH, N. E., RUSECKAITE, R. A., & MARTUCCI, J. F. (2011). Chitosan–gelatin composites and bi–layer films with potential antimicrobial activity. Food Hydrocolloids, v. 25, p. 1372–1381. doi:10.1016/j.foodhyd.2011.01.001.

LIU, S., ZHANG, C., HONG, P., & JI, H. (2006). Concentration of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) of tuna oil by urea complexation. Optimization of process parameters. Journal of Food Engineering, v. 73, p. 203–209. doi:10.1016/j.jfoodeng.2005.01.020.

BIJI, K. B., RAVISHANKAR, C. N., MOHAN, C. O., & GOPAL, T. K. S. (2015). Smart packaging systems for food applications. a review. Journal of Food Science and Technology, v. 52, p. 6125–6135. doi:10.1007/s13197–015–1766–7.



  • There are currently no refbacks.