Sazonalidade do material particulado fino e black carbon no ar ambiente de Londrina/Paraná / Seasonality of fine particulate material and black carbon in the ambient air of Londrina/Paraná

Débora Rejane Fernandes dos Santos, Igor Soares Mantovani, Janaína Souza, Maria Cristina Solci

Abstract


Formado principalmente por processos de combustão incompleta de substâncias contendo carbono, o black carbon (BC) é um dos principais constituintes do material particulado atmosférico (MPA) que possuem efeitos adversos à saúde e ao clima. O presente estudo teve como objetivo investigar a variabilidade sazonal do BC associado ao MPA fino em local de tráfego em Londrina. As amostragens ocorreram às margens de uma rodovia, no período de maio de 2017 a julho de 2018 utilizando amostrador de alto volume. As concentrações de MP2,5 variaram de 0,6 a 328 μg m-3, com valor médio de 35,4 μg m-3. Concentrações de BC variaram de 0,3 a 6,9 μg m-3, com valor médio de 1,7 μg m-3. Temperatura, precipitação, umidade relativa e radiação solar mostraram baixa correlação com BC. A variabilidade sazonal mostrou concentrações mais elevadas no período de baixa precipitação pluviométrica. Em comparação com estudos realizados foi possível observar a redução gradativa na concentração de BC em Londrina, onde a exaustão de veículos automotivos tem sido a principal fonte de emissão local e regional.

 


Keywords


poluição do ar, aerossol atmosférico, fuligem.

References


Alizadeh-Choobari, O., A. A. Bidokhti, P. Ghafarian, e M. S. Najafi. 2016. “Temporal and spatial variations of particulate matter and gaseous pollutants in the urban area of Tehran”. Atmospheric Environment 141: 443–53.

Ansari, Mohsen, e Mohammad Hassan Ehrampoush. 2019. “Meteorological correlates and AirQ+ health risk assessment of ambient fine particulate matter in Tehran, Iran”. Environmental Research 170: 141–50.

BAIRD, Colin; CANN, Michael. Química Ambiental. 4.ed. Porto Alegre: Bookman, 2012.

Bhat, Mudasir Ahmad, Shakil Ahmad Romshoo, e Gufran Beig. 2017. “Aerosol black carbon at an urban site-Srinagar, Northwestern Himalaya, India: Seasonality, sources, meteorology and radiative forcing”. Atmospheric Environment 165: 336–48.

Bibi, Samina et al. 2017. “Temporal variation of Black Carbon concentration using Aethalometer observations and its relationships with meteorological variables in Karachi, Pakistan”. Journal of Atmospheric and Solar-Terrestrial Physics 157–158(April): 67–77.

Brewer, Thomas L. 2019. “Black carbon emissions and regulatory policies in transportation”. Energy Policy 129: 1047–55.

Briggs, Nicole L., e Christopher M. Long. 2016. “Critical review of black carbon and elemental carbon source apportionment in Europe and the United States”. Atmospheric Environment 144: 409–27.

Cheremisinoff, Nicholas P. Handbook of air pollution prevention and control / Nicholas P. Cheremisinoff. Includes bibliographical references and index. ISBN 0-7506-7499-7 (alk. paper) 1. Air quality management. 2. Air-Pollution. 3. Factory and trade p. cm. waste-Environmental aspects. I. Title.

Chen, Wei, Huimin Tian, Haimeng Zhao, e Kai Qin. 2020. “Multichannel characteristics of absorbing aerosols in Xuzhou and implication of black carbon”. Science of the Total Environment 714: 136820.

Chen, Xiaocui et al. 2014. “Characterization of fine particulate black carbon in Guangzhou, a megacity of south China”. Atmospheric Pollution Research 5(3): 361–70.

CONSELHO NACIONAL DO MEIO AMBIENTE (CONAMA). Resolução CONAMA491 de 19 de novembro de 2018. Disponível em: Acesso em: 05 de ago. de 2020.

Dotse, Sam-quarcoo, Joshua Kwame Asane, F G Ofosu, e I J K Aboh. 2012. “Particulate Matter and Black Carbon Concentration Levels in Ashaiman , a Semi-Urban Area of Ghana , 2008”. 4(1): 20–25.

EPA - UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. National Ambient Air Quality Standards 2017. Disponível em : http://www.epa.gov/air/criteria.html - acesso em 22 ago de 2020.

FANG, T, H G., VERMA V, PELTIER, R. WEBER, E, R J. 2015. PM 2,5 water-soluble elements in the southeastern United States : automated analytical method development , spatiotemporal distributions , source apportionment , and implications for heath. 15, 11667–82.

Franzin, Bruno T. et al. 2020. “Characterization of atmospheric aerosol (PM10 and PM2.5) from a medium sized city in São Paulo state, Brazil”. Journal of environmental sciences (China) 89: 238–51.

Hetem, I.G., Andrade, M.D.F., 2016. Characterization of fine particulate matter emitted from the resuspension of road and pavement dust in the Metropolitan Area of São Paulo, Brazil. Atmosphere 7 (3), 31.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA disponivel em : https://cidades.ibge.gov.br/brasil/pr/londrina/panorama - acesso em 20 set. 2020

Van den Hove, Annelies et al. 2020. “Development of a land use regression model for black carbon using mobile monitoring data and its application to pollution-avoiding routing”. Environmental Research 183: 108619.

Kasumba, John, e Britt A. Holmén. 2018. “Heterogeneous ozonation reactions of PAHs and fatty acid methyl esters in biodiesel particulate matter”. Atmospheric Environment 175: 15–24.

Krecl, Patricia et al. 2019. “Modelling urban cyclists’ exposure to black carbon particles using high spatiotemporal data: A statistical approach”. Science of the Total Environment 679: 115–25.

Krecl, Patricia, Admir Créso Targino, Thiago Pereira Landi, e Matthias Ketzel. 2018. “Determination of black carbon, PM2.5, particle number and NOx emission factors from roadside measurements and their implications for emission inventory development”. Atmospheric Environment 186(January): 229–40.

Kucbel, Marek et al. 2017. “Temporal and seasonal variations of black carbon in a highly polluted European city: Apportionment of potential sources and the effect of meteorological conditions”. Journal of Environmental Management 203: 1178–89.

Lack, Daniel A. et al. 2014. “Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: A review of techniques, their limitations and uncertainties”. Analytical and Bioanalytical Chemistry 406(1): 99–122.

Li, Huixing, Yuhua Qin, e Guohui Feng. 2017. “The analysis of PM2.5 Outdoor Fine Particulate Matter Impact on Air Quality in the University Libraries Reading Room in Winter of North China”. Procedia Engineering 205: 3346–52.

Li, Yong Jie et al. 2017. “Real-time chemical characterization of atmospheric particulate matter in China: A review”. Atmospheric Environment.

Ma, N., e W. Birmili. 2015. “Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere”. Science of the Total Environment 512–513: 154–66.

de Miranda, Regina Maura, Pedro Jose Perez-Martinez, Maria de Fatima Andrade, e Flavia Noronha Dutra Ribeiro. 2019. “Relationship between black carbon (BC) and heavy traffic in São Paulo, Brazil”. Transportation Research Part D: Transport and Environment 68: 84–98.

OMS – Organização Mundial de Saúde 2011: Air Quality and Health. Disponível em: http://www.who.int/en/ Acesso a: 02 de ago. 2020.

Ozdemir, Huseyin et al. 2014. “Spatial and temporal analysis of black carbon aerosols in Istanbul megacity”. Science of the Total Environment 473–474: 451–58.

Pandey, Sudhir Kumar, Ki Hyun Kim, e Richard J.C. Brown. 2011. “A review of techniques for the determination of polycyclic aromatic hydrocarbons in air”. TrAC - Trends in Analytical Chemistry.

de Paula Ribeiro, Joaquim et al. 2020. “Aqueous particulate matter (PM2.5) from Brazil alters antioxidant profile responses and causes oxidative stress”. Atmospheric Pollution Research 11(3): 511–19.

Peralta, O. et al. 2019. “Atmospheric black carbon concentrations in Mexico”. Atmospheric Research 230: 104626.

Petzold, A.; Ogren, J. A.; Fiebig, M.; Laj, P.; LI, S.M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N.; Wehrli, C.; Wiedensohler, A.; Zhang, X.Y. 2013. Recommendations for reporting “black carbon” measurements, Atmospheric Chemistry and Physics, 13: 8365-8379.

Piracelli, et al. 2020. Emissões de poluentes atmosféricos em condições reais de pavimentação asfáltica: Material particulado, black carbon e hidrocarbonetos policíclicos aromáticos, Quim. Nova, Vol. XY, No. 00, 1-9, 200.

Pooley, Frederick D., e Milagros Mille. 1999. “Composition of Air Pollution Particles”. Air Pollution and Health: 619–34.

Ravi Kiran, V., S. Talukdar, M. Venkat Ratnam, e A. Jayaraman. 2018. “Long-term observations of black carbon aerosol over a rural location in southern peninsular India: Role of dynamics and meteorology”. Atmospheric Environment 189(March): 264–74.

Şahin, Ülkü Alver et al. 2020. “Temporal variations of atmospheric black carbon and its relation to other pollutants and meteorological factors at an urban traffic site in Istanbul”. Atmospheric Pollution Research 11(7): 1051–62.

Selokar, Ashish, Balaji Ramachandran, K N Elangovan, e Bhupathiraju Dattatreya. 2020. “Materials Today : Proceedings PM 2 . 5 particulate matter and its effects in Delhi / NCR”. Materials Today: Proceedings (xxxx).

Shah, Asad Naeem et al. 2012. “Characterization of polycyclic aromatic hydrocarbon emissions from diesel engine retrofitted with selective catalytic reduction and continuously regenerating trap”. Journal of Environmental Sciences 24(8): 1449–56.

Shirmohammadi, Farimah et al. 2017. “Oxidative potential of on-road fine particulate matter (PM2.5) measured on major freeways of Los Angeles, CA, and a 10-year comparison with earlier roadside studies”. Atmospheric Environment 148: 102–14.

Singh, Vikas, Khaiwal Ravindra, Lokesh Sahu, e Ranjeet Sokhi. 2018. “Trends of atmospheric black carbon concentration over United Kingdom”. Atmospheric Environment 178(January): 148–57.

SISTEMA DE METEOROLOGIA DO PARANÁ. Disponivel em: http://www.simepar.br/- acesso em 20/set. 2020.

Targino, Admir Créso et al. 2016. “Hotspots of black carbon and PM2.5 in an urban area and relationships to traffic characteristics”. Environmental Pollution 218: 475–86.

———. 2018. “Spatial variability of on-bicycle black carbon concentrations in the megacity of São Paulo: A pilot study”. Environmental Pollution 242: 539–43.

Targino, Admir Créso, e Patricia Krecl. 2016. “Local and regional contributions to black carbon aerosols in a mid-sized city in southern Brazil”. Aerosol and Air Quality Research 16(1): 125–37.

Tiwari, S et al. 2013. “Diurnal and seasonal variations of black carbon and PM 2.5 over New Delhi, India: Influence of meteorology Anthropogenic emissions Wind speed Visibility Atmospheric boundary layer”. Atmospheric Research 125–126: 50–62.

Tomaz, Sophie et al. 2017. “Sources and atmospheric chemistry of oxy-and nitro-PAHs in the ambient air of Grenoble (France)”. Atmospheric Environment 161: 144–54. de 2019).

Xu, Fanfan et al. 2020. “Investigation of the chemical components of ambient fine particulate matter (PM2.5) associated with in vitro cellular responses to oxidative stress and inflammation”. Environment International 136(January).

Zheng, Xuan et al. 2017. “Characteristics of black carbon emissions from in-use light-duty passenger vehicles”. Environmental Pollution 231: 348–56.

Yamineva, Yulia, e Zhe Liu. 2019. “Cleaning the air, protecting the climate: Policy, legal and institutional nexus to reduce black carbon emissions in China”.

Segalin, B., Gonçalves, F. L.T. Fornaro, A. 2016 Black carbon em material particulado nas residências de idosos na região metropolitana de São Paulo, Brasil. Revista Brasileira de Meteorologia, 31: 11–18.

W.H.O. 2006. Healt impact of PM10 and ozone in 13 Italian cities. World Health Organization. releases/newly-found-health-effects-of-air-pollution-call-for-stronger-europeanunion-air-policies Disponivel em: http://www.euro.who.int/en/media-centre/sections/latestpress-. Acesso em 20 set. 2020.




DOI: https://doi.org/10.34117/bjdv6n10-736

Refbacks

  • There are currently no refbacks.