Avaliação de desempenho de usina termelétrica operando com cogeração de energia/Performance evaluation of a thermal power plant operating with cogeneration power

Authors

  • Luiz Antônio de Oliveira Chaves
  • Lucas Neves de Almeida
  • Johny Soares Corrêa
  • Hugo Monstans Thurler dos Santos
  • Mateus Carvalho Amaral
  • Luis Gustavo Zelaya Cruz
  • Stefhany Ramine Alves Nunes da Silva

DOI:

https://doi.org/10.34117/bjdv6n10-641

Keywords:

Usina termelétrica, Gás natural, Ciclo termodinâmico, Indicador chave de desempenho, Eficiência energética.

Abstract

Diferentes tecnologias são atualmente utilizadas para produzir energia, mas conforme o tipo de combustível utilizado a preocupação da poluição ambiental demanda diferentes ações para buscar alternativas viáveis de produção. Dentre as opções, as usinas termelétricas (UTE) podem admitir diferentes configurações de sistemas termodinâmicos cíclicos para recuperação de calor cedido pelo sistema, amplificando a disponibilidade de eletricidade. Quanto ao insumo, o gás natural (GN) apresenta menores efeitos ambientais quando comparado aos outros combustíveis fósseis, gerando menor taxa de emissão de poluentes, além de possuir menor custo associado. Desta forma, o atual artigo tenciona constatar a garantia da eficiência energética de uma UTE de 1772 MW de potência e avaliar as ponderações ambientais de emissão de gás carbônico (CO2), por meio de indicadores-chave de desempenho (KPI) e do estudo comparativo do projeto da planta modelo com dados da literatura. A metodologia do estudo de caso foi utilizada com aplicação da modelagem termodinâmica computacional em regime permanente por dois modelos analíticos para construção da planta de processo, contemplando o conjunto de equações de conservação de massa e energia. Os resultados obtidos demostraram eficiência ao admitir o ciclo em cogeração constatando um desvio percentual na faixa de 0,1% a 3,2 % entre a planta original e os dois modelos propostos. Adicionalmente, os resultados apresentam uma diminuição de até 79,2 % da emissão de CO2 quando confrontado a outras unidades geradoras de energia intensivas em carbono, gerando menor grau de impacto ambiental.

References

AGHAHOSSEINI, S., DINCER, I., - Comparative performance analysis of low-temperature Organic Rankine Cycle (ORC) using pure and zeotropic working fluids. Applied Thermal Engineering, v. 54, pp. 35–37, 2013.

AHMADI, G. R., TOGHRAIE, D., Energy and exergy analysis of Montazeri Steam Power Plant in Iran. Renewable and Sustainable Energy Reviews, v. 56, pp. 454-463, 2016.

AHMADI, A., JAMALI, D. H., EHYAEI, M. A., ASSAD, M. E. H., Energy, exergy, economic and exergoenvironmental analyses of gas and air bottoming cycles for production of electricity and hydrogen with gas reformer. Journal of Cleaner Production, v. 259, n. 120915, 2020

ALIYU, M., ALQUDAIHI, A., SAID, S., HABIB, M., Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress, v. 15, n. 100450, 2020.

ANP (Agência Nacional do Petróleo) – Anuário Estatístico 2020. Preços médios de referência do gás natural, segundo Unidades da Federação. Disponível em: <http://www.anp.gov.br/publicacoes/anuario-estatistico/anuario-estatistico-2020>. Acesso em: 08 de agosto de 2020.

ANP (Agência Nacional do Petróleo) - Boletim de Produção de Petróleo e Gás Natural. Disponível em: <http://www.anp.gov.br/arquivos/publicacoes/boletins-anp/producao/2020-03-boletim.pdf>. Acesso em: 08 de agosto de 2020.

B?L?NESCU, D. T., HOMUTESCU, V.M. Performance analysis of a gas turbine combined cycle power plant with waste heat recovery in Organic Rankine Cycle. Procedia Manufacturing, v. 32, pp. 520–528. 2019.

BEJAN, A., Advanced Engineering Thermodynamics, 4 th Edition. John Wiley & Sons, 2016.

BELYAKOV, N., Concept of a thermal power plant. Sustainable Power Generation, Vol.1, pp. 157-178, 2019.

ÇENGEL, A. Y., BOLES, M. A., Termodinâmica. 7 ed, pp. 70-74, 2013.

DEV, N., SAMSHER., KACHHWAHA, S. S., ATTRI, R., GTA modeling of combined cycle power plant efficiency analysis. Ain Shams Engineering Journal, v. 6, n. 1, pp. 217-237, 2015.

ESQUIVEL-PATINO, G. G., SERNA-GONZÁLEZ, M., NÁPOLES-RIVERA, F., Thermal integration of natural gas combined cycle power plants with CO2 capture systems and organic Rankine cycles. Energy Conversion and Management, v. 151, pp. 334-342, 2017.

GABBAR, H. A., ZIDAN, A., Modeling, evaluation, and optimization of gas-power and energy supply scenarios. Frontiers in Energy, v. 10, pp. 393-408, 2016.

GAETE-MORALES, C., GALLEGO-SCHMID, A., STAMFORD, L., AZAPAGIC, A., Life cycle environmental impacts of electricity from fossil fuels in Chile over a ten-year period. Journal of Cleaner Production, v. 232, pp. 1499-1512, 2019.

GANJEHKAVIRI, A., JAAFAR, M. N. M., HOSSEINI, S. E., Optimization and effect of steam turbine outlet quality on the output power of a combined cycle power plant. Energy Conversion and Management, v. 89, pp. 231-243, 2015.

GAURAV, G. K., SINGH, N., FRANCIS, B., - Energy Analysis of a Thermal Power Plant. SSRN Electronic Journal, 2019.

GOORDAZI, M., Comparative energy analysis on a new regenerative Brayton cycle. Energy Conversion and Management, v. 120, pp. 25-31, 2016.

GULEN, C. S., Gas Turbine Combined Cycle Power Plants. pp. 288-306, 2019.

GRIGORUK, D. G., TURKIN, A. V., Studies of the thermal circuit of an advanced integrated gasification combined-cycle power plant. Thermal Engineering, v. 57, pp. 125-128, 2010.

HUANG, W., CHEN, J., FU, C., HUANG, F., Approach for natural gas to be a primary energy source in China. Frontiers of Engineering Management, v. 6, pp. 467-476, 2019.

IBRAHIM, T. K., RAHMAN, M. M., Thermal impact of operating conditions on the performance of combined cycle gas turbine. Journal of Applied Research and Technology, v. 10, n. 4, pp. 567-577, 2012.

IDRISSA, A. K. M., BOULAMA, G. K., Advanced exergy analysis of a combined Brayton/Brayton power cycle. Energy, v. 166, pp. 724-737, 2019.

KAUSHIK, S. C., REDDYA, V. S., TYAGI, S. K., Energy and exergy analyses of thermal power plants: A review. Renewable Sustainable Energy Review, v. 15, pp. 1857-1872, 2011.

KEHLHOFER, R., HANNEMANN, F., STIRNIMANN, F., RUKES, B., Combined-cycle Gas & Steam Turbine Power Plants. 3 ed, pp. 241-261, 2009.

KOTOWICZ, J., BRZECZEK, M., Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations study. Energy, v. 175, pp. 1100-1120, 2019.

KWON, H. M., MOON, S. W., KIM, T. S., KANG, D. W., SOHN, J. L., LEE, J., A study on 65 % potential efficiency of the gas turbine combined cycle. Journal of Mechanical Science and Technology, v. 33, pp. 4535-4543, 2019.

LI, D., HU, Y., LI, D., WANG, J., Combined-cycle gas turbine power plant integration with cascaded latent heat thermal storage for fast dynamic responses. Energy Conversion and Management, v. 183, pp. 1-13, 2019.

MOHAMMED, M. K., IBRAHIM, T. K., AWAD, O. I., RAHMAN, M. M., BASRAWI, F., ABD ALLA, A. N., MAMAT, R., The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, v. 79, pp. 459-474, 2017.

MOIOLI, S., PELLEGRINI, L. A., Fixed and Capture Level Reduction operating modes for carbon dioxide removal in a Natural Gas Combined Cycle power plant. Journal of Cleaner Production, v. 254, n. 120016, 2020.

NAKOMCIC-SMARAGDAKIS, B., CEPIC, Z., CEPIC, M., STAJIC, T., Data analysis of the flue gas emissions in the thermal-power plant firing fuel oil and natural gas. International Journal of Environmental Science and Technology, v. 11, pp. 269-280, 2014.

QIAO, Z., GUO, Q., SUN, H., Optimal Gas Storage Capacity in Gas Power Plants Considering Electricity and Natural Gas Systems Constraints. Energy Procedia, v. 142, pp. 2983-2989, 2017.

RAJESH, R., KISHORE, P. S., Thermal Efficiency of Combined Cycle Power Plant. International Journal of Engineering and Management Research, v. 8, n. 3, pp. 229-234, 2018

REDDY, V. S., KAUSHIK, S. C., TYAGI, S. K., Exergetic analysis and evaluation of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant. Clean Technologies and Environmental Policy, v. 16, pp. 489-499, 2014.

SALPINGIDOUA, C.; TSAKMAKIDOUA, D.; VLAHOSTERGIOSA, Z.; MISIRLISB, D.; FLOUROSC, M.; YAKINTHOSA, K. The Effect of Turbine Blade Cooling on the Performance of Recuperative Cycles for Gas Turbines Applications. Chemical Engineering Transactions, v. 61, 2017.

SAUNDERS, H. D., The unexploited potential for natural gas to greatly increase energy efficiency. Energy Efficiency, v. 8, pp. 403-415, 2015

SOUZA, G. F. M., Thermal power plant performance and analysis. Springer Series in Reliability Engineering, 2012.

SHAMSHIRGARAN, S. R., NOUZARI, M. M., ASSADI, M. K., NAJAFZADEH, K., BAYATI, G. R., The indicators and criteria of efficiency, water consumption and emission of Thermal Power Plants. Journal of Engineering and Applied Sciences, v. 11, n. 22, pp. 13338-13343, 2016.

WANG, Y., WANG, Y., HUANG, Y., YANG, J., MA, Y., YU, H., ZENG, M., ZHANG, F., ZHANG, Y., Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network. Applied Energy, v. 251, n. 113410, 2019.

WANG, Z. Q., ZHOU, N. J., GUO, J., WANG, X. Y., Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat. Energy, v. 40, n. 1, pp. 107-115, 2012.

WITTENBURG, R., HUBEL, M., PRAUSE, H., GIEROW, C., RIEBIG, R., HASSEL, E., Effects of rising dynamic requirements on the lifetime consumption of a combined cycle gas turbine power plant. Energy Procedia, v. 158, pp. 5717-5723, 2019.

YUAN-HU, L., KIM, J., KIM, S., HAN, H., Use of latent heat recovery from liquefied natural gas combustion for increasing the efficiency of a combined-cycle gas turbine power plant. Applied Thermal Engineering, v. 161, n. 114177, 2019.

LEAL, F. I., REGO, E. E., RIBEIRO, C. O., Natural gas regulation and policy in Brazil: Prospects for the market expansion and energy integration in Mercosul. Energy Policy, v. 128, pp. 817-829, 2019

DINCER, I., BICER, Y., Integrated Energy Systems for Multigeneration. Elsevier, 2020.

Published

2020-10-28

How to Cite

Chaves, L. A. de O., Almeida, L. N. de, Corrêa, J. S., Santos, H. M. T. dos, Amaral, M. C., Cruz, L. G. Z., & Silva, S. R. A. N. da. (2020). Avaliação de desempenho de usina termelétrica operando com cogeração de energia/Performance evaluation of a thermal power plant operating with cogeneration power. Brazilian Journal of Development, 6(10), 82829–82847. https://doi.org/10.34117/bjdv6n10-641

Issue

Section

Original Papers