Óxido de zinco e biosílica de diatomáceas: potencias fotoeletrodos? / Zinc oxide and diatomaceous biosylics: potentials of photoelectrodes?

Gabriel Yuji Hata, Leticia Guerreiro da Trindade, Rafael Bichir Gomes de Lima Lourenço, José Juan Barrera-Alba, Tatiana Martelli Mazzo

Abstract


O presente trabalho busca a inovação na tecnologia de células solares através da produção de fotoeletrodos utilizando um compósito do semicondutor ZnO combinado com biosílica extraída de diatomáceas da espécie Thalassiosira pseudonana (BMAK 172). O potencial deste eletrodo foi comparado com o de ZnO puro e de biosílica pura por meio de caracterizações fotoeletroquímicas. Os resultados demonstraram que todos os fotoeletrodos apresentam potencial para aplicação em células fotovoltaicas com destaque para a biosílica pura.


Keywords


energia,solar,ZnO,diatomácea,Thalassiosira

References


AJAYAN J.; NIRMAL D.; MOHANKUMAR P.; SARAVANAN M.; JAGADESH M.; ARIVAZHAGAN L. A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices and Microstructures, v. 143, n. April, p. 106549, 2020.

GONG J.; SUMATHY K.; QIAO Q.; ZHOU Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews, v. 68, n. July 2016, p. 234–246, 2017.

HASIM S. N. F.; HAMID M. A. A.; SHAMSUDIN R.; JALAR A. Synthesis and characterization of ZnO thin films by thermal evaporation. Journal of Physics and Chemistry of Solids, v. 70, n. 12, p. 1501–1504, 2009.

HUANG D. R.; JIANG Y. J.; LIOU R. L.; CHEN C. H.; CHEN Y. A.; TSAI C. H. Enhancing the efficiency of dye-sensitized solar cells by adding diatom frustules into TiO 2 working electrodes. Applied Surface Science, v. 347, p. 64–72, 2015.

JIANG, C. Y., SUN, X. W., LO, G. Q., KWONG, D. L., WANG, J. X. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Applied Physics Letters, 90(26), 263501, 2007

KLINGSHIRN, C. ZnO: Material, physics and applications. ChemPhysChem, v. 8, n. 6, p. 782–803, 2007.

LOSIC, D.; MITCHELL, J. G.; VOELCKER, N. H. Diatomaceous lessons in nanotechnology and advanced materials. Advanced Materials, v. 21, p. 2947-2958, 2009.

MAHMOOD, K.; KANG, H. W.; MUNIR, R.; SUNG, H. J. A dual-functional double-layer film with indium-doped ZnO nanosheets/nanoparticles structured photoanodes for dye-sensitized solar cells. RSC Advances, v. 3(47), 25136–25144, 2013.

MAO L.; LIU J.; ZHU S.; ZHANG D.; CHEN Z.; CHEN C. Sonochemical fabrication of mesoporous TiO 2 inside diatom frustules for photocatalyst. Ultrasonics Sonochemistry, v. 21, p. 527–534, 2014.

OMAR, A.; ALI, M. S.; RAHIM N. A. Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Solar Energy, v. 207, p. 1088–1121, 2020.

REA I.; TERRACCIANO M.; CHANDRASEKARAN S.; VOELCKER N. H.; DARDANO P.; MARTUCCI N. M.; LAMBERTI A.; DE STEFANO L. Bioengineered Silicon Diatoms: Adding Photonic Features to a Nanostructured Semiconductive Material for Biomolecular Sensing. Nanoscale Research Letters, v.11, 2016.

SAAD E. M.; PICKERING R. A.; SHOJI K.; HOSSAIN M. I.; GLOVER T. G.; KRAUSE J. W.; TANG Y. Effect of cleaning methods on the dissolution of diatom frustules. Marine Chemistry, v. 224, p. 103826, 2020.




DOI: https://doi.org/10.34117/bjdv6n10-477

Refbacks

  • There are currently no refbacks.