Chemical changes of cell wall components of heat-treated wood / Alterações químicas dos componentes da parede celular de madeiras tratadas termicamente

Carolina Rodrigues Barroco, Danielle Affonso Sampaio, Renata Nunes Oliveira, Alexandre Miguel do Nascimento


The wood’s cell wall undergoes chemical modifications due to thermal action. The goal of this work was to analyze these changes in the Pinus caribaea var. caribaea and Khaya ivorensis, untreated and heat treated. The thermal treatment temperatures were 160° C, 180° C and 200° C, and the samples were then evaluated by Fourier transform infrared spectroscopy (FTIR). Fourier transform infrared spectroscopy analyzes were performed on samples with and without treatment, using a spectrometer in the Attenuated Total Reflectance (ATR) mode. The results were plotted in the Origin-Pro 8 program, obtaining comparison charts. In treated and untreated samples, the bands at ~1027cm-1 and ~3337cm-1 were more intense with increasing temperature. It suggests that the structural elements degraded, and small molecules were then obtained. It is concluded that the increase in temperature implied a greater absorption of infrared by the peaks related to cellulose, hemicelluloses, and lignin, indicating that they are undergoing changes.


Thermoretification, Pinus, African Mahogany, FTIR, Commercial Wood.

Full Text:



Boeriu CG, Bravo D, Gosselink RJA, Van Dam JEG. 2004. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Industrial crops and products, 20(2): 205-218.

Chen H, Ferrari C, Angiuli M, Yao J, Raspi C, Bramanti E. 2010. Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydrate polymers, 82(3): 772-778.

Fahey LM, Nieuwoudt MK, Harris PJ. 2017. Predicting the cell-wall compositions of Pinus radiata (radiata pine) wood using ATR and transmission FTIR spectroscopies. Cellulose, 24(12): 5275-5293.

Gérardin P. 2016. New alternatives for wood preservation based on thermal and chemical modification of wood—a review. Annals of Forest Science, 73(3): 559-570.

Hakkou M, Pétrissans M, Zoulalian A, Gérardin P. 2005. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer degradation and stability, 89(1): 1-5.

He X, Liu X, Nie B, Song D. 2017. FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel, 206: 555-563.

Herrera R, Erdocia X, Llano-Ponte R, Labidi J. 2014. Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties. Journal of analytical and Applied Pyrolysis, 107: 256-266.

Junior Coelho LM, Nunes AMM, Pádua JFF, Júnior Santos EP, Lima PAF. 2020. O desenvolvimento brasileiro das florestas de rápido crescimento com fins energéticos/The Brazilian development of the forest rapid growth for energy. Brazilian Journal of Development, Curitiba, 6(5): 28111-28125.

Kawamoto H. 2017. Lignin pyrolysis reactions. Journal of Wood Science, 63(2): 117-132.

Kubo S, Kadla JF. 2005. Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules, 6(5): 2815-2821.

Lima ACB. 2019. Efeito da modificação térmica nas propriedades da madeira de mogno africano (Khaya ivorensis a. chev.). Forest Science Master Thesis. Espírito Santo, Brasil. Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo. 83 p.

Lopes JO, Garcia RA, Souza ND. 2018. Infrared spectroscopy of the surface of thermally-modified teak juvenile wood. Maderas. Ciencia y tecnología, 20(4): 737-746.

Moreira JMMAP, Oliveira EB. 2017. Importância do setor florestal brasileiro com ênfase nas plantações florestais comerciais. In Plantações florestais: geração de benefícios com baixo impacto ambiental. Brasília, DF. Embrapa, p. 11-20.

Müller G, Schöpper C, Vos H, Kharazipour A, Polle A. 2009. FTIR-ATR spectroscopic analyses of changes in wood properties during particle-and fibreboard production of hard-and softwood trees. BioResources, 4(1), 49-71.

Özgenç Ö, Durmaz S, Boyaci IH, Eksi-Kocak H. 2017. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 171: 395-400.

Popescu CM, Popescu MC, Singurel G, Vasile C, Argyropoulos DS, Willfor S. 2007. Spectral characterization of eucalyptus wood. Applied spectroscopy, 61(11): 1168-1177.

Reis CAF, Kalil Filho NA, Aguiar AV, Moraes-Rangel AC. 2019. Caracterização das espécies pertencentes ao gênero Khaya de interesse no Brasil. In Mogno-africano (Khaya spp.): atualidades e perspectivas do cultivo no brasil. Brasília, DF. Embrapa, p. 12-49.

Ribeiro A, Ferraz Filho AC, Oliveira ED. 2019. Usos, importância econômica e perspectivas de mercado. In Mogno-africano (Khaya spp.): atualidades e perspectivas do cultivo no brasil. Brasília, DF. Embrapa, p. 50-73.

Sills DL, Gossett JM. 2012. Using FTIR to predict saccharification from enzymatic hydrolysis of alkali‐pretreated biomasses. Biotechnology and bioengineering, 109(2): 353-362.

SNIF. 2019. Boletim SNIF 2019 Ed 1. Consulted 19 jun. 2020. Available in

SNIF. 2020. Cadeia Produtiva. Consulted 19 jun. 2020. Available in

Silva JGM, Vidaurre GB. 2019. Propriedades da madeira do mogno-africano (Khaya spp.). In Mogno-africano (Khaya spp.): atualidades e perspectivas do cultivo no Brasil. Brasília, DF. Embrapa, p. 287-362.

Timar MC, Varodi AM, Hacibektasoglu M, Campean M. 2016. Color and FTIR analysis of chemical changes in beech wood (Fagus sylvatica L.) after light steaming and heat treatment in two different environments. BioResources 11(4): 8325-8343.

Wagner A, Tobimatsu Y, Phillips L, Flint H, Geddes B, Lu F, Ralph J. 2015. Syringyl lignin production in conifers: Proof of concept in a Pine tracheary element system. Proceedings of the National Academy of Sciences 112(19): 6218-6223.

Yeo JY, Chin BLF, Tan JK, Loh YS. 2017. Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. Journal of the Energy Institute.

Yin X, Huang A, Zhang S, Liu R, Ma F. 2018. Identification of three Dalbergia species based on differences in extractive components. Molecules 23(9): 2163.



  • There are currently no refbacks.