Arbuscular mycorrhiza potentiates the quality of fruits but does not influence the precocity of goldenberry plants / A micorriza arbuscular potencializa a qualidade de frutos mas não influencia a precocidade de plantas de fisális

Authors

  • José Luís Trevizan Chiomento Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Débora Filippi
  • Eduardo Zanin
  • Marcos Guilherme Piuco
  • Thomas dos Santos Trentin
  • Alana Grando Dornelles
  • Michele Fornari

DOI:

https://doi.org/10.34117/bjdv6n10-365

Keywords:

Physalis peruviana L., arbuscular mycorrhizal fungi, phyllochron, flavor.

Abstract

The alternative to minimize the impacts to the agroecosystem and to establish a sustainable management for the goldenberry cultivation (Physalis peruviana L.) corresponds to the use of inoculants based on arbuscular mycorrhizal fungi (AMF). However, this biotechnological tool is lacking and unknown to producers. The objective of the research was to investigate whether goldenberry plants in the absence and presence of inoculation with AMF differ in their horticultural potential. The treatments were absence of inoculation (control) and three mycorrhizal inoculants, arranged in a randomized block design, with five replications. The phyllochron, mycorrhizal colonization and fruit quality were evaluated. Non-mycorrhized plants had a higher leaf appearance rate and, therefore, a lower phyllochron value. Mycorrhizal colonization was greater in roots of plants produced with Glomus intraradices. Less acid and more tasty fruits were produced by plants inoculated with AMF, regardless of the fungal treatment used. In conclusion, goldenberry plants in the absence and presence of inoculation with AMF have different horticultural potential. Plants devoid of arbuscular mycorrhiza are earlier to start flowering. The fungal species G. intraradices is more effective in colonizing the roots of the plant host. Plants submitted to mycorrhizal biotechnology potentiate the chemical quality of berries.

References

ARNOLD, C. Y. Maximum-minimum temperature as a basis for computing heat units. American Society for Horticulture Science, v. 76, p. 682-692, 1960.

BETEMPS, D. L.; FACHINELLO, J. C.; LIMA, C. S. M; GALARÇA, S. P.; RUFATO, A. R. Época de semeadura, fenologia e crescimento de plantas de fisális no sul do Brasil. Revista Brasileira de Fruticultura, v. 36, n.1, p. 179-185, 2014.

CHIOMENTO, J. L. T.; STÜRMER, S. L.; CARRENHO, R.; COSTA, R. C.; SCHEFFER-BASSO, S. M.; ANTUNES, L. E. C.; NIENOW, A. A.; CALVETE, E. O. Composition of arbuscular mycorrhizal fungi communities signals generalist species in soils cultivated with strawberry. Scientia Horticulturae, v. 253, p. 286-294, 2019.

DALMAGO, G. A.; FOCHESATTO, E.; KOVALESKI, S.; TAZZO, I. F.; BOLIS, L. M.; CUNHA, G. R.; NIED, A. H.; BERGAMASCHI, H.; SANTI, A. Filocrono e número de folhas da canola em diferentes condições ambientais. Pesquisa Agropecuária Brasileira, v. 48, p. 573-581, 2013.

ETZBACH, L.; PFEIFFER, A.; WEBER, F.; SCHIEBER, A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chemistry, v. 245, p. 508-517, 2018.

FURLANI, P. R.; FERNANDEZ JÚNIOR, F. Cultivo hidropônico de morango em ambiente protegido. In: SIMPÓSIO NACIONAL DO MORANGO & ENCONTRO DE PEQUENAS FRUTAS E FRUTAS NATIVAS DO MERCOSUL, 2., 2004, Pelotas. Anais... Curitiba: Embrapa Clima Temperado, 2004. p. 102-115.

GARCIA, K.; DOIDY, J.; ZIMMERMANN, S. D.; WIPF, D.; COURTY, P. E. Take a trip through the plant and fungal transportome of mycorrhiza. Trends in Plant Science, v. 21, p. 937-950, 2016.

GARLAND, B. C.; SCHROEDER-MORENO, M. S. Influence of summer cover crops and mycorrhizal fungi on strawberry production in the Southeastern United States. HortScience, v. 46, n. 7, p. 985-992, 2011.

GILMORE JUNIOR, E. C.; ROGERS, J. S. Heat units as a method of measuring maturity in corn. Agronomy Journal, v. 50, p. 611- 615, 1958.

GOETTEN, L. C.; MORETTO, G.; STÜRMER, S. L. Influence of arbuscular mycorrhizal fungi inoculum produced on-farm and phosphorus on growth and nutrition of native woody plant species from Brazil. Acta Botanica Brasilica, v. 30, n. 1, p. 9-16, 2016.

GÓMEZ-BELLOT, M. J.; NORTES, P. A; ORTUÑO, M. F.; ROMERO, C.; FERNÁNDEZ-GARCÍA, N.; SÁNCHEZ-BLANCOA, M. J. Influence of arbuscular mycorrhizal fungi and treated wastewater on water relations and leaf structure alterations of Viburnum tinus L. plants during both saline and recovery periods. Journal of Plant Physiology, v. 188, p. 96-105, 2015.

HERRERA, A. Manejo poscosecha. In: FLÓREZ, V. J.; FISHER, G.; SORA, A. D. Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.). Bogotá: Unibiblos, Universidad Nacional de Colombia, 2000. 175 p.

HRISTOZKOVA, M.; GENEVA, M.; STANCHEVA, I.; ILIEV, I.; AZCÓN-AGUILAR, C. Symbiotic association between goldenberry (Physalis peruviana) and arbuscular mycorrhizal fungi in heavy metal-contaminated soil. Journal of Plant Protection Research, v. 57, n. 2, p. 173-184, 2017.

IAL. Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos. ZENEBON, O.; PASCUET, N. S.; TIGLEA, P. (Org.). 4. ed. São Paulo: Instituto Adolfo Lutz, 2008. 1020 p. Primeira edição digital.

ICONTEC. Instituto Colombiano de Normas Técnicas e Certificação. Norma Técnica Colombiana 4580. Frutas frescas. Uchuva. Especificaciones. Estabelece os requisitos que devem cumprir a uchuva (Physalis peruviana L.), destinada para o consumo fresco e como matéria-prima para o processamento. ICONTEC, Colômbia, 1998. 17 p.

ISLAM, M. S.; JALALUDDIN, M.; GARNER, J. O.; YOSHIMOTO, M.; YAMAKAWA, O. Artificial shading and temperature influence on anthocyanin compositions in sweetpotato leaves. HortScience, v. 40, n. 1, p. 176-180, 2005.

JUNG, S. C.; MARTINEZ-MEDINA, A.; LOPEZ-RAEZ, J. A.; POZO, M. J. Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, v. 38, p. 651-664, 2012.

LINGUA, G.; BONA, E.; MANASSERO, P.; MARSANO, F.; TODESCHINI, V.; CANTAMESSA, S.; COPETTA, A.; D’AGOSTINO, G.; GAMALERO, E.; BERTA, G. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. International Journal of Molecular Sciences, v. 14, p. 16207-16225, 2013.

KONVALINKOVÁ, T.; JANSA, J. Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Frontiers in Plant Science, v. 7, p. 1-11, 2016.

MIRANDA, D.; FISCHER, G.; ULRICHS, C. The influence of arbuscular mycorrhizal colonization on the growth parameters of cape gooseberry (Physalis peruviana L.) plants grown in a saline soil. Journal of Soil Science and Plant Nutrition, v. 11, n. 2, p. 18-30, 2011.

OLIVARES-TENORIO, M. L.; DEKKER, M.; VERKERK, R.; VAN BOEKEL, M. A. Health-promoting compounds in cape gooseberry (Physalis peruviana L.): review from a supply chain perspective. Trends in Food Science & Technology, v. 57, p. 83-92, 2016.

PHILLIPS, J. M.; HAYMAN, D. S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, v. 55, p. 158-161, 1970.

PUENTE, L. A.; PINTO-MUÑOZ, C. A.; CASTRO, E. S.; CORTÉS, M. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Research International, v. 44, n. 7, p. 1733-1740, 2011.

RAMADAN, M. F. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): an overview. Food Research International, v. 44, p. 1830-1836, 2011.

REDECKER, D.; SCHUBLER, A.; STOCKINGER, H.; STÜRMER, S. L.; MORTON, J. B.; WALKER, C. An evidence based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, v. 23, p. 515-531, 2013.

REYES, S. M. R.; HOYOS, G. R.; FERREIRA JÚNIOR, D. C.; CECÍLIO FILHO, A. B.; FONSECA, L. P. M. Physiological response of Physalis peruviana L. seedlings inoculated with Funneliformis mosseae under drought stress. Revista de Ciências Agrárias, v. 42, n. 1, p. 175-183, 2019.

ROBINSON-BOYER, L.; FENG, W.; GULBIS, N.; HAJDU, K.; HARRISON, R. J.; JEFFRIES, P.; XU, X. The use of arbuscular mycorrhizal fungi to improve strawberry production in coir substrate. Frontiers in Plant Science, v. 7, e-1237, 2016.

ROSA, H. T.; WALTER, L. C.; STRECK, N. A.; ANDRIOLO, J. L. SILVA, M. R.; LANGNER, J. A. Base temperature for leaf appearance and phyllochron of selected strawberry cultivars in a subtropical environment. Bragantia, v. 70, p. 939-945, 2011.

ROUPHAEL, Y.; CARDARELLI, M.; COLLA, G. Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminium toxicity in zucchini squash. Scientia Horticulturae, v. 188, p. 97-105, 2015.

SELLITTO, V. M.; GOLUBKINA, N. A.; PIETRANTONIO, L.; COZZOLINO, E.; CUCINIELLO, A.; CENVINZO, V.; FLORIN, I.; CARUSO, G. Tomato yield, quality, mineral composition and antioxidants as affected by beneficial microorganisms under soil salinity induced by balanced nutrient solutions. Agriculture, v. 9, n. 5, 2019.

SEVERO, J.; LIMA, C. S. M.; COELHO, M. T.; RUFATTO, A. R.; ROMBALDI, C. V.; SILVA, J. A. Atividade antioxidante e fitoquímicos em frutos de physalis (Physalis peruviana, L.) durante o amadurecimento e o armazenamento. Revista Brasileira de Agrociência, v. 16, p. 77-82, 2010.

SILVA, M.; SIEGA, T. C.; FELICETI, M. L.; TOZETTO, L. C.; MAZARO, S. M.; POSSENTI, J. C. Desempenho fisiológico de sementes olerícolas tratadas com micorriza endofítica. Brazilian Journal of Development, v. 6, n. 8, p. 59381-59390, 2020.

SINCLAIR, G.; CHAREST, C.; DALPÉ, Y.; KHANIZADEH, S. Influence of colonization by arbuscular mycorrhizal fungi on three strawberry cultivars under salty conditions. Agricultural and Food Science, v. 23, p. 146-158, 2014.

STRECK, N. A.; ROSA, H. T.; WALTER, L. C.; PAULA, G. M.; CAMERA, C. Filocrono de genótipos de arroz irrigado em função de época de semeadura. Ciência Rural, v. 37, p. 323-329, 2007.

TORRES-OSSANDÓN, M. J.; VEGA-GÁLVEZ, A.; LÓPEZ, J.; STUCKEN, K.; ROMERO, J.; DI SCALA, K. Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of cape gooseberry pulp (Physalis peruviana L.). The Journal of Supercritical Fluids, v. 138, p. 215-220, 2018.

TROUVELOT, A.; KOUGH, J. L.; GIANINAZZI-PEARSON, V. Mesure du taux de mycorhization VA d’un systeme radiculaire: recherche de methodes d’estimation ayant une signification fonctionelle. In: GIANINAZZI-PEARSON, V.; GIANINAZZI, S. (Eds.). Physiological and genetic aspects of mycorrhizae. Paris: INRA Press, 1986. p. 217-221.

VALENZUELA, A.; RONCO, A. Fitoesteroles y fitoestanoles: aliados naturales para la proteccion de la salud cardiovascular. Revista Chilena de Nutrición, v. 21, p. 161-169, 2004.

Downloads

Published

2020-10-16

How to Cite

Chiomento, J. L. T., Filippi, D., Zanin, E., Piuco, M. G., Trentin, T. dos S., Dornelles, A. G., & Fornari, M. (2020). Arbuscular mycorrhiza potentiates the quality of fruits but does not influence the precocity of goldenberry plants / A micorriza arbuscular potencializa a qualidade de frutos mas não influencia a precocidade de plantas de fisális. Brazilian Journal of Development, 6(10), 79041–79056. https://doi.org/10.34117/bjdv6n10-365

Issue

Section

Original Papers