Phenolic compounds in fisalis (Physalis peruviana Linneus) extracts and action of the extracts on the phytopathogen Botrytis cinerea Pers / Compostos fenólicos em extratos fisalis (Physalis peruviana Linneus) e ação dos extratos sobre o fitopatógeno Botrytis cinerea Pers

Débora Filippi, Laura Beatriz Rodrigues, Wagner Luiz Priamo, José Luís Trevizan Chiomento, Maria Tereza Friedrich

Abstract


Phenolic acids and flavonoids naturally protect plants against phytopathogenic fungi and, therefore, plant extracts containing phenolic compounds are considered a natural alternative to conventional fungicides. Goldenberry extract was evaluated for its ability to inhibit the growth of the fungus Botrytis cinerea Pers. in vitro and in strawberries, cultivar Albion. Caffeic, chlorogenic and ferulic acids and flavonoid quercetin were identified in the goldenberry extract at different concentrations. The different concentrations of the extract tested in vitro resulted in variations in the percentage inhibition of fungal mycelial development. The fungicidal effect was observed when the 5 mL volume of the extract at 20% (v/v) concentration was tested in vitro. The phenolic compounds present in goldenberry extract represents a preventive natural method of control of B. cinerea in vitro and it can be alternative method of control for postharvest strawberries of cultivar Albion.


Keywords


Fragaria X ananassa Duch., Physalis peruviana L., gray mold, phenolic compounds

Full Text:

PDF

References


Ahlem, H., Serrhini, N. M., Frill, D., Jijasli H. M., Lahlali, R., 2007. Predictive modelling of temperature and water activity (solutes) on the in vitro radial growth of Botrytis cinerea Pers. International Journal of Food Microbiology. Gembloux, Belgium, p. 1-9. fev. 2007. https://doi.org/10.1016/j.ijfoodmicro.2006.11.004.

Aqueveque, P., Céspedes, C. L., Alarcón, J., Hirschmann, G. S., Cõnumir, J. A., Becerra, J., Silva, M., Sterner, O., Rodrigán, R., Arranda, M., 2016. Antifungal activities of extracts produced by liquid fermentations of Chilean Stereum species against Botrytis cinerea (gray mould agent). Crop Prot. 89, 95-100. https://doi.org/10.1016/j.cropro.2016.07.014.

Balouiri, M., Sadiki, M., Ibnsouda, S.K., 2016. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6, 71-79. https://doi.org/10.1016/j.jpha.2015.11.005.

Corrales-Bernal, A., Vergara, A. I., Rojano, B., Yahia, E., Maldonado, M. E., 2015. Características nutricionales y antioxidantes de la uchuva colombiana (Physalis peruviana L.) en tres estadios de su maduración: Órgano Oficial de la Sociedad Latinoamericana de Nutrición. Archivos Latinoamericanos de Nutrición. 65, 54-262.

Curi, P. N., Carvalho dos Santos, C., Salgado, D. L., Silva, D. F., Pinheiro, A. C. M., Souza, V. R. Characterization of different native american physalis species and evaluation of their processing potential as jelly in combination with brie-type cheese. Food Science And Technology, [s.l.], v. 38, n. 1, p.112-119, 15 maio 2017. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/1678-457x.01317.

Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., Foster, G. D. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, [s.l.], v. 13, n. 4, p.414-430, 4 abr. 2012. Wiley. http://dx.doi.org/10.1111/j.1364-3703.2011.00783.x.

Ertürk, Ö., Çolayvaz, M., Can, Z. K., Korkmaz, K., 2017. Antioxidant, Antimicrobial Activities and Phenolic and Chemical Contents of Physalis peruviana L. from Trabzon, Turkey. Indian J. Pharm. Educ. 51, 213-216. Doi: 10.5530/ijper.51.3s.15.

Filippi, D., Bilibio, D., Bender, J. P., Carniel, N., Priamo, W. L., et al., 2015. Kinetic extraction of total polyphenols from Pitanga (Eugenia uniflora L.): effect of ultrassonic treatment, modeling and antioxidant potential. J. Food Proc. Eng. 38, 320-328. https://doi.org/10.1111/jfpe.12135.

Forges, M., Vàsquez, H., Charles, F., Sari, D. C., Urban, L., Lizzi, Y., Bardin, M., Arrouf, J., 2018. Impact of UV-C radiation on the sensitivity of three strawberry plant cultivars (Fragaria x ananassa) against Botrytis cinerea. Sci. Hortic. 240, 603-613. https://doi.org/10.1016/j.scienta.2018.06.063.

Fungicide Resistance Action Committee (Switzerland), 2014. Pathogen risk list.

Fungicide Resistence Action Committee (Brasil). Modo de Ação de Fungicidas. 2018.

Gindro, K., Pezet, R., 2001. Efects of long-term storage at diferent temperatures on conidia of Botrytis cinerea pers.: Fr. FEMS Microbiol. Immunol. 204, 101-104.

Gyawali, R., Ibrahim, S.A., 2014. Natural products as antimicrobial agents. Food Control. 46, 412-429. https://doi.org/10.1016/j.foodcont.2014.05.047.

Icontec. Instituto Colombiano de Normas Técnicas e Certificação. Norma Técnica Colombiana 4580. Frutas frescas. Uchuva. Especificaciones. Estabelece os requisitos que devem cumprir a uchuva (Physalis peruviana L.), destinada para o consumo fresco e como matéria-prima para o processamento. ICONTEC, Colômbia, 1998. 17 p.

Jeon, C.W., Kim, D.R., Park, J. J., Kang, N. J., Kwak, Y. S. Exported Strawberry Gray Mold Decay Related Spore Density and Disease Incidence in Cultivation Field. The Korean Journal Of Pesticide Science, [s.l.], v. 21, n. 2, p.224-231, 30 jun. 2017. The Korean Society of Pesticide Science. http://dx.doi.org/10.7585/kjps.2017.21.2.224.

Jin, P., Wang, H., Zhang, Y., Huang, Y., Wang, Li., Zheng, Y. UV-C enhances resistance against gray mold decay caused by Botrytis cinerea in strawberry fruit. Scientia Horticulturae, [s.l.], v. 225, p.106-111, nov. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.scienta.2017.06.062.

Junkes, V. H.; Groff, A. M. Rendimento e qualidade de morangos produzidos em dois sistemas de produção. Brazilian Journal of Development, v. 6, n. 8, p. 55125-55134, 2020. Brazilian Journal of Development. http://dx.doi.org/10.34117/bjdv6n8-072.

Kim, J., Shin, J. H., Gumilang, A., Chung, K., Choi, K. Y., Kim, K. S. Effectiveness of Different Classes of Fungicides on Botrytis cinerea Causing Gray Mold on Fruit and Vegetables. The Plant Pathology Journal, [s.l.], v. 32, n. 6, p.570-574, 1 dez. 2016. Korean Society of Plant Pathology. http://dx.doi.org/10.5423/ppj.nt.05.2016.0114.

Lagrouh, F., Dakka, N., Bakri, Y., 2017. The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. J. Mycol. Med. 27, 303-311. 10.1016/j.mycmed.2017.04.008.

Lahlali, R., Mohammed, E., Badoc, A., Ahmed, L., Ahlem, H., 2012. Effect of pH, temperature and water activity on the inhibition of Botrytis cinerea by Bacillus amyloliquefaciens isolates. Afr. J. Bio.11, 2210-2217. http://dx.doi.org/10.5897/AJB11.645.

Li, Y., Shao, X., Xu, J., Wei., Y., Xu, F., Wang, H. Tea tree oil exhibits antifungal activity against Botrytis cinerea by affecting mitochondria. Food Chemistry. Ningbo, China, p. 62-67. abr. 2017.

Licodiedoff, S., Koslowski, L.A.D., Ribani, R.H., 2013. Flavonols and antioxidant activity of Physalis peruviana L. fruit and two maturity stages. Acta Sci. 35, 393-399. http://dx.doi.org/10.4025/actascietechnol.v35i2.13265.

Lopes, U. P., Zambolim, L., Capobiango, N. P., Arturo, N., Gracia, O., Freitas-Lopes, R. L. Resistance of Botrytis cinerea to fungicides controlling gray mold on strawberry in Brazil. Bragantia, [s.l.], v. 76, n. 2, p.266-272, 15 maio 2017. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/1678-4499.055.

Lutz, I.A., 2008. Métodos físico-químicos para análise de alimentos, quarta ed., primeira ed. digital, São Paulo, São Paulo. Martínez, G., Regente, M., Jacobi, S., Rio, M. D.,

Martínez, G., Regente, M., Jacobi S., Del Rio, M., Pinedo M., De la Canal L. Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pesticide Biochemistry And Physiology. Mar del Plata, Argentina, p. 30-35. jun. 2017.

Mendoza, L., Yanez, K., Vivanco, M., Melo, R., Cotoras, M. Characterization of extracts from winery by-products with antifungal activity against Botrytis cinerea. Industrial Crops And Products, [s.l.], v. 43, p.360-364, maio 2013. Elsevier BV. http://dx.doi.org/10.1016/j.indcrop.2012.07.048.

Mikulic-Petkovsek, M.; Schmitzer, M. M.; Slatnar, V.; Weber, A.; Veberic, R.; Stampar, F.; Munda, A.; Koron, D., 2013. Alteration of the Content of Primary and Secondary Metabolites in Strawberry Fruit by Colletotrichum nymphaeae Infection. J. Agric. Food Chem., 61, 5987-5995. doi: 10.1021/jf402105g.

Nagpala, E. G., Guidarelli, M., Gasperotti, M., Masuero, D., Bertolini, P., Vrhovsek, U., Baraldi, E., 2016. Polyphenols Variation in Fruits of the Susceptible Strawberry Cultivar Alba during Ripening and upon Fungal Pathogen Interaction and Possible Involvement in Unripe Fruit Tolerance. J. Agric. Food Chem. 64, 1869−1878. DOI: 10.1021/acs.jafc.5b06005.

Olivares-Tenorio, M., Dekker, M., Verkerk, R., Van Boekel, M. A.J.S. Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends In Food Science & Technology, [s.l.], v. 57, p.83-92, nov. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.tifs.2016.09.009.

Ornelas-Paz, J. J., Yahia, E.M., Ramírez-Bustamante, N., Pérez-Martínez, J.D., del Pilar Escalante-Minakata, M., Ibarra-Junquera, V., Acosta-Muñiz, C., Guerrero-Prieto, V., Ochoa-Reyes, E. Physical attributes and chemical composition of organic strawberry fruit (Fragaria X ananassa Duch, Cv. Albion) at six stages of ripening. Food Chemistry. Chihuahua, Mexico, p. 372-381. maio 2013.

Patzke, H., SCHIEBER, A. Growth-inhibitory activity of phenolic compounds applied in an emulsifiable concentrate - ferulic acid as a natural pesticide against Botrytis cinerea. Food Research International, v. 113, p.18-23, nov. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.foodres.2018.06.062.

Petrasch, S., Knapp, S. J., Van Kan, J. A. L., Blanco-Ulate, B. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology, [s.l.], v. 20, n. 6, p.877-892, 4 abr. 2019. Wiley. http://dx.doi.org/10.1111/mpp.12794.

Xu, D., Dengb, Y., Hana, T., Jiangb, L., Xib, P., Wanga, Q., Jiangb, Z., Gaoa, L. In vitro and in vivo effectiveness of phenolic compounds for the control of postharvest gray mold of table grapes. Postharvest Biology And Technology, [s.l.], v. 139, p.106-114, maio 2018. Elsevier BV. http://dx.doi.org/10.1016/j.postharvbio.2017.08.019.

Yildiz, G., Izli, N., Unal, H., Uylaser, V., 2015. Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). J. Food Sci. Technol. 52, 2320-2327. DOI: 10.1007/s13197-014-1280-3.

Zabka, M., Pavela, R., 2013. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere. 93, 1051-1056. DOI: 10.1016/j.chemosphere.2013.05.076.

Zacchino, S. A., Butassia, E., Di Liberto, M., Raimondi, M., Postigo, A., Sortino, M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine, [s.l.], v. 37, p.27-48, dez. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.phymed.2017.10.018.




DOI: https://doi.org/10.34117/bjdv6n10-316

Refbacks

  • There are currently no refbacks.