Thermal control ways for Li-Ion batteries cooling: A review / Caminhos de controle térmico para baterias de Li-Ion cooling: Uma avaliação

Clauber André Ferasso, Lirio Schaeffer, Jeferson Diehl de Oliveira, Luciane Calabria, Cesar Pandolfi, Flávia Mânica Siviero


Thermal management system is a relevant aspect for Li-ion batteries, mainly for electric vehicles. For this reason, several cooling methods have been proposed along the years, considering effect of both thermal conduction and convection. This study reviews the main methods applied for cooling Li-ion batteries: the use of phase change materials PCMs, air-forced and liquid cooling. Cell Arrangements are also presented due to the effect of temperature distribution. Finally, a discussion on the use of flow boiling as a mechanism of heat transfer in Li-ion batteries is presented.


lithium-ion battery, thermal management, optimization, heat exchanger.

Full Text:



JAGUEMONT, J.; BOULON, L.; DUBÉ, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 2016, 164, 99-114.

ARORA, P.; WHITE, R.E.; DOYLE, M. Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc., 1998, 145, 3647-3667.

ZIV, B.; BORGEL, V.; AURBACH, D.; KIM, J.-H.; XIAO, X.; POWELL, B.R. Investigation of the reasons for capacity fading in Li-ion battery cells batteries and energy storage. J. Electrochem. Soc., 2014, 161:A,1672-1680.

WANG, J.; PUREWAL, J.; LIU, P.; HICKS-GARNER, J.; SOUKAZIAN, S.; SHERMAN, E.; et al. Degradation of lithium ion batteries employing graphite negatives and nickel–cobalt–manganese oxide + spinel manganese oxide positives: part 1, aging mechanisms and life estimation. J. Power Sour., 2014, 269, 937-948.

WANG, Q.; PING, P.; ZHAO, X.; CHU, G.; SUN, J.; CHEN, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sour., 2012, 208, 210-224.

LING, Z.; CAO, J.; ZHANG, W.; ZHANG, Z.; FANG, X.; GAO, X. Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology. Appl. Energy, 2018, 228, 777-788.

LIU, F.; LAN, F.; CHEN, J. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling. J. Power Sour., 2016, 321, 57-70.

HE, F.; LI, X.; MA, L. Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells. Int. J. Heat Mass Transf., 2014, 72, 622-629.

SAW, L.H.; YE, Y.; TAY, A.A.O.; CHONG, W.T.; KUAN, S.H; YEW, M.C. Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Appl. Energy, 2016, 177, 783-792.

ZHAO J.; RAO, Z.; HUO, Y.; LIU, X.; Li, Y. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles. Appl. Therm. Eng., 2015, 85, 33-43.

WANG, T.; TSENG, K.J.; ZHAO, J.; WEI, Z. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Appl. Energy 2014, 134, 229-238.

MALIK, M.; DINCER, I.; ROSEN, M.A.; MATHEW, M.; FOWLER, M. Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling. Appl. Therm. Eng., 2018, 129, 472-481.

HUANG, Y.-H.; CHENG, W.-L.; ZHAO, R. Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials. Energy Conv. Manag., 2019, 182, 9-20.

MOHAMED, S.A.; AL-SULAIMAN, F.A.; IBRAHIM, N.I.; ZAHIR, M.H.; AL-AHMED, A.; SAIDUR, R, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sustain Energy Rev., 2017, 70, 1072-1089.

KAHWAJI, S.; JOHNSON, M. B.; KHEIRABADI, A.C.; GROULX, D.; WHITE, M. A. Stable, low-cost phase change material for building applications: the eutectic mixture of decanoic acid and tetradecanoic acid. Applied Energy, 2016, 168, 457-464.

LING, Z.; WEN, X.; ZHANG, Z.; FANG, X.; XU, T. Warming-Up Effects of Phase Change Materials on Lithium-Ion Batteries Operated at Low Temperatures. Energy Techno., 2016, 4, 1-7.

EHID, R.; FLEISCHER, A.S. Development and characterization of paraffin-based shape stabilized energy storage materials. Energy Convers. Manage., 2012, 53, 84-91.

TANG, Y.; JIA, Y.; ALVA, G.; HUANG, X.; FANG, G. Synthesis, characterization and properties of palmitic acid/high density polyethylene/graphene nanoplatelets composites as form-stable phase change materials. Sol Energy Mater. Sol. Cells, 2016, 155, 421-429.

QIAN, T.; LI, J.; FENG, W. Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material. Energy Convers. Manage., 2017, 143, 96-108.

ZHANG, L.; ZHANG, P.; WANG, F.; KANG, M.; LI, R.; MOU, Y.; et al. Phase change materials based on polyethylene glycol supported by graphene-based mesoporous silica sheets. Appl. Therm. Eng., 2016, 101, 217-223.

TIAN, B.; YANG, W.; LUO, L.; WANG, J.; ZHANG, K.; FAN, J.; et al. Synergistic enhancement of thermal conductivity for expanded graphite and carbon fiber in paraffin/EVA formstable phase change materials. Sol Energy 2016, 127, 48-55.

WEI, H.; XIE, X.; LI, X.; LIN, X. Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material. Appl. Energy, 2016, 178, 616-623.

ZHANG, Q.; LUO, Z.; GUO, Q.; WU, G. Preparation and thermal properties of short carbon fibers/erythritol phase change materials. Energy Convers. Manage., 2017, 136, 220-228.

CHEN, P.; GAO, X.; WANG, Y.; XU, T.; FANG, Y.; ZHANG, Z. Metal foam embedded in SEBS/paraffin/HDPE form-stable PCMs for thermal energy storage. Sol. Energy Mater. Sol. Cells., 2016, 149, 60-65.

ZHANG, H.; GAO, X.; CHEN, C.; XU, T.; FANG, Y.; ZHANG, Z. A capric–palmitic–stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage. Compos. A. Appl. Sci. Manuf. 2016, 87, 138-145.

CHENG, W.-L.; LI, W.-W.; NIAN, Y.-L.; XIA, W.-D. Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials. Int. J. Heat Mass Transf., 2018,116, 507-511.

HARISH, S.; OREJON, D.; TAKATA, Y.; KOHNO, M. Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets. Appl. Therm. Eng., 2015, 80, 205-211.

BAHIRAEI, F.; FARTAJ, A.; NAZRI, G.-A. Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications. Energy Convers. Manage., 2017, 153, 115-128.

LV, Y.; SITU, W.; YANG, X.; ZHANG, G.; WANG, Z. A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management. Energy Convers. Manage., 2018, 163, 250-259.

PANCHAL, S.; DINCER, I.; AGELIN-CHAAB, M.; FRASER, R.; FOWLER, M. Experimental temperature distributions in a prismatic lithium-ion battery at varying conditions. Int. Commun. Heat Mass Trans., 2016, 71, 35-43.

JI, L. W.; LEE, P. S.S; KONG, X. X.; FAN, Y. CHOU, S.K. Ultra-thin minichannel LCP for EV battery thermal management. Applied Energy, 2014, 134, 229-238.

HUO, Y.; RAO, Z.; LIU, X.; ZHAO, J. Investigation of power battery thermal management by using mini-channel cold plate. Energy Conver. Manag., 2015, 89, 387-395.

BASU, S.; HARIHARAN, K. S.; KOLAKE, S. M.; SONG, T.; SOHN, D. K.; YEO, T. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system. Applied Energy, 2016, 181, 1-13.

DUCOULOMBIER, M.; COLASSON, S.; BONJOUR, J.; HABERSCHILL, P. Carbon dioxide flow boiling in a single microchannel – Part II: Heat transfer. Exp. Therm. Fluid. Sci., 2011, 35, 597-611.

DANG, C.; HARAGUCHI, N.; HIHARA, E. Flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube. Int. J. Refri., 2010, 33, 655-663.

CHOI, K.-I.; PAMITRAN, A.S.; OH, J.-T. Two-phase flow heat transfer of CO2 vaporization in smooth horizontal minichannels. Int. J. Refri., 2007, 30, 767-777.

MAQBOOL, M. H.; PALM, B.; KHODABANDEH, R. Flow boiling of ammonia in vertical small diameter tubes: Two phase frictional pressure drop results and assessment of prediction methods. Int. J. Therm. Sci., 2012, 54, 1-12.

FAYYADH, E.M.; MAHMOUD, M. M.; SEFIANE, K.; KARAYIANNIS, T.G. Flow boiling heat transfer of R134a in multi microchannels. Int. J. Heat Mass Trans.,2017, 110, 422-436.

WANG, S.; GONG, M. Q.; CHEN, G.F.; SUN, Z. H.; WU, J. F. Two-phase heat transfer and pressure drop of propane during saturated flow boiling inside a horizontal tube. Int. J. Refri., 2014, 41, 200-209.

NASR, M.; AKHAVAN-BEHABADI, M.A.; MOMENIFAR, M.A.; HANAFIZADEH, P. Heat transfer characteristic of R-600a during flow boiling inside horizontal plain tube. Int. Com. Heat Mass Trans., 2015, 66, 93-99.

YANG, Z.-Q.; CHEN, G.-F.; YAO, Y.; SONG, Q.-L., SHEN, J.; GONG, M.-Q. Experimental study on flow boiling heat transfer and pressure drop in a horizontal tube for R1234ze(E) versus R600a. Int J. Refri. 2018, 85, 334-352.

de OLIVEIRA, J. D.; COPETTI, J. B.; PASSOS, J. C. An experimental investigation on flow boiling heat transfer of R-600a in a horizontal small tube. Int. J. Refri., 2016, 72, 97-110.

SEMPÉRTEGUI-TAPIA, D. F.; RIBATSKI, G. Flow Boiling Heat transfer and two-phase pressure drop of isobutane in a 1.1 mm diameter tube. In: 23rd ABCM International Congress of Mechanical Engineering, Rio de Janeiro, Brazil.

LAGO et al. Power demand forecasting on hybrid energy storage system in electric vehicles using Narx networks. Braz. J. of Develop., Curitiba, v. 5, n. 10, p. 17797-17811 oct. 2019 ISSN 2525-8761



  • There are currently no refbacks.