Estudo da molhabilidade de nanotubos de TiO2 incorporados com nanopartículas de Ag e ZnO / Study of the wetness of TiO2 nanotubes incorporated with Ag and ZnO nanoparcules

Douglas Thainan Silva Lima Mendes, Elisiane de Santana Chaves, Michelle Cardinale Souza Silva Macedo, Cristiane Xavier Resende

Abstract


O presente trabalho, embasado na necessidade de biomateriais cada vez mais seguros, buscou elucidar o efeito que os filmes de nanotubos de TiO2 amorfos e recozidos, bem como, incorporados por nanopartículas (NP’s) de Ag e ZnO têm frente a molhabilidade e energia superficial do titânio comercialmente puro (Ti-CP). Como resultado, foi possível concluir que os filmes de TiO2, independente da presença das NP’s, e o tratamento térmico propiciaram um aumento na molhabilidade, bem como na energia superficial, podendo fornecer ao Ti-CP maior bioatividade.


Keywords


Biomateriais, molhabilidade, nanotubos de titânia, anodização, nanopartículas.

References


Abdullah, S.A., M.Z. Sahdan, N. Nafarizal, H. Saim, Z. Embong, C.H. Cik Rohaida, and F. Adriyanto. Influence of Substrate Annealing on Inducing Ti3+ and Oxygen Vacancy in TiO2 Thin Films Deposited via RF Magnetron Sputtering. Applied Surface Science v. 462, p. 575-582, 2018.

Allaker, R. P.; Yuan, Z. Nanoparticles and the control of oral biofilms. Nanobiomaterials in Clinical Dentistry, v. 156.2, p. 128-145, 2011.

Andrade, G. R. S.; Nascimento. C.; Júnior, E. C. S.; Mendes, D. T. S. L.; Gimenez, I. F. ZnO/Au nanocatalysts for enhanced decolorization of an azo dye under solar, UV-A and dark conditions. Journal of Alloys and Compounds, v. 710, p. 557-566, 2017.

Aziziyeh,, R.; Amin, M.; Habiba, M.; Perlaza, J. G.; Szafranskic, K.; Mtavish, R. K.; Disher, T.; LÜDKE, A.; Cameron, C. The burden of osteoporosis in four Latin American countries: Brazil, Mexico, Colombia, and Argentina. Journal of Medical Economics, v. 22, n. 7, p. 638–644, 2019.

Bangera, A. E.; Appaiah, K. A conditional justification for the determination of surface energy of solids using contact angle methods. Materials Chemistry and Physics, v. 234, p. 168–171, 2019.

Chaves, E. DE S. Anodização de ligas de Ti-Nb-Si para aplicações odontológicas. Trabalho de Conclusão de Curso. Departamento de Ciência e Engenharia de Materiais. Universidade Federal de Sergipe, 2015.

Chen, B.; You, Y.; Ma, A.; Song, Y.; Jiao, J.; Song, L.; Shi, E.; Zhong, X.; Li, Y.; Li, C. Zn-Incorporated TiO 2 Nanotube Surface Improves Osteogenesis Ability Through In fl uencing Immunomodulatory Function of Macrophages. International Journal of Nanomedicine, v. 15, p. 2095, 2020

Cheng, Y.; Yang, H.; Yang, Y.; Huang, J.; Wu, K.; Chen, Z.; Wang, X.; Lin, C.; Lai, Y. Progress in TiO2 nanotube coatings for biomedical applications: a review. Journal of Materials Chemistry B, v. 6, n. 13, p. 1862–1886, 2018.

Falconer, J. L.; Grainger, D. W. Silver Antimicrobial Biomaterials. Comprehensive Biomaterials II - Silver antimicrobial biomaterials. (Poul Ducheyne). Elsevier, Cambridge (UK), 2017.

Guo, Z.; Chen, C.; Gao, Q.; Li, Y.; Zhang, L. Fabrication of silver-incorporated TiOr2 nanotubes and evaluation on its antibacterial activity. Materials Letters, v. 137, p. 464–467, 2014.

Hromadko, L.; Jäger, A.; Sopha, H.; Macak, J. M.; Tesar, K.; Knotek, P. TiO2 nanotubes grown on Ti substrates with different microstructure. Materials Research Bulletin, v. 103, n. 2010, p. 197–204, 2018.

Hu, C.; Ashok, D.; Nisbet, D. R.; Gautam, V. Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials, v. 219, p. 119366, 2019.

Indira, K., U. Kamachi Mudali, T. Nishimura, and N. Rajendran. A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications. Journal of Bio- and Tribo-Corrosion. v. 1, n. 4, p. 28, 2015.

Kasemo, B. Biological surface science. Surface Science, v. 500, n. 1–3, p. 656–677, 2002.

Khan, A.; Maity, K. Statistical modelling and machinability assessment of commercially pure titanium (CP-Ti) grade II: An experimental investigation. Measurement, v. 137, p. 664–672, 2019.

Król, A.; Pomastowski, P.; Rafinska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in Colloid and Interface Science, v. 249, p. 37–52, 2017.

Li , H.; Cui, Q.; Feng, B.; Wang, J.; Lu, X.; Weng, J. Applied Surface Science Antibacterial activity of TiO2 nanotubes: Influence of crystal phase, morphology and Ag deposition. Applied Surface Science, v. 284, p. 179–183, 2013.

Lima, G. G. DE; Luz, A. R. DA; Pereira, B. L.; Szesz, E. M.; Souza, G. B. DE; Lepienski, C. M.; Kurumoto, N. K.; Nugent, M. J. D. Tailoring surface properties from nanotubes and anodic layers of titanium for biomedical applications. Woodhead Publishing, p. 179-199, 2019.

Liu, G.; Du, K.; Wang, K. Surface wettability of TiO2 nanotube arrays prepared by electrochemical anodization. Applied Surface Science, v. 388, n. 8, p. 313–320, 2016.

Liu, K.; Cao, M.; Fujishima, A.; Jiang, L. Bio-Inspired Titanium Dioxide Materials with Special Wettability and Their Applications. Chemical Reviews, v. 114, n. 19, p. 10044–10094, 2014.

Liu, W.; Su, P.; Gonzales, A.; Wang, N.; Zhang, Z.; Li, H.; Webster, T. J.; Wang, J.; Chen, S. Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: experiments and modeling. International Journal of Nanomedicine, v. 10, p. 1997, 2015.

Liu, X.; Chu, P.; Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, v. 47, n. 3–4, p. 49–121, 2004.

Weller, M.; Overton, T.; Rourke, J. F. A. Química Inorgânica. (Arisynha Jacques Affonso). Bookman, 6ª ed., Porto Alegre - RS, 2017.a

Mrtinez-Marquez, D.; Gulati, K.; Carty, C. P.; Steward, R. A.; Ivanovsky, S. Determining the relative importance of titania nanotubes characteristics on bone implant surface performance: A quality by design study with a fuzzy approach. Materials Science and Engineering: C, v. 114, p. 110995, 2020.

Mazare, A.; Dilea, M.; Ionita, D.; Titorencu, I.; Trusca, V.; Vasille, E. Changing bioperformance of TiO2 amorphous nanotubes as an effect of inducing crystallinity. Bioelectrochemistry, v. 87, p. 124–131, a2012.

Mzare, A.; Totea, G.; Burneic, C.; Shmukie, P.; Dmetrescu, I.; Ionita, D. Corrosion, antibacterial activity and haemocompatibility of TiO2 nanotubes as a function of their annealing temperature. Corrosion Science, v. 103, p. 215–222, 2016.

Mei, S., Wang, H., Wang, W., Tong, L., Pan, H., Ruan, C., ... & Cheng, Y. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials, v. 35, n. 14, p. 4255–4265, 2014.

Mohan, L.; Anandan, C.; Rajendran, N. Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks’ solution for biomedical applications. Electrochimica Acta, v. 155, p. 411–420, 2015.

Meiga, T. DE O. Investigação morfológica sobre os efeitos da aplicação de tensão a arcabouços funcionalizados de poli(3- hidroxbutirato) no cultivo de células ósseas em biorreator. Dissertação de Mestrado. COPPE/UFRJ. 2014.

Nascimento, D. S. Desenvolvimento de Ligas Ti-10Mo-xSi submetidas à anodização para efeitos de crescimento de nanotubos com possível aplicação em próteses odontológicas. Dissertação de Mestrado. P2CEM/UFS. 2018.

Renganathan, G.; Tanneru, N.; Madural, S. L. Orthopedical and biomedical applications of titanium and zirconium metals. Fundamental Biomaterials: Metals, p. 211–241, 2018.

Sagomonyants, K. B.; Gronowicz, G. 4.9 Integrin-Activated Reactions to Metallic Implant Surfaces- Comprehensive Biomaterials II. (Paul Ducheyne). Elsevier, Cambridge (UK), 2017.

Shaw, D. Introduction to Colloid and Surface Chemistry. Butterworth-Heinemann. 4. ed. Oxford, 2013.

Shin, D. H.; Shokuhfar, T.; Choi, C. K.; Lee, S. H.; Friedrich, C. Wettability changes of TiO2 nanotube surfaces. Nanotechnology, v. 22, n. 31, 2011.

Silva, J. S. P. Estudo das características físico-químicas e biológicas pela adesão de osteoblastos em superfícies de titânio modificadas pela nitretação em plasma. Tese de Doutorado. Faculdade de Medicina/USP, 2008.

Singh, A.; Gautam, P. K.; Verma, A.; Singh, V.; Shivapriya, P. M.; Shivalkar, S.; Sahoo, A. K.; Samanta, S. K. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnology Reports, v. 25, p. 427, 2020.

Sun, Y.; Sun, S.; Liao, X.; Wen, J.; Yin, G.; Pu, X.; Yao, Y.; Huang, Z. Effect of heat treatment on surface hydrophilicity-retaining ability of titanium dioxide nanotubes. Applied Surface Science, v. 440, p. 440–447, 2018.

Wang, M.; Tang, T. Surface treatment strategies to combat implant-related infection from the beginning. Journal of Orthopedic Translation, v. 17, p. 42–54, 2019.

Yuan, Z.; Liu, P.; Hao, Y.; Ding, Y.; Cai, K. Biointerfaces Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response. Colloids and Surfaces B, v. 171, n. July, p. 597–605, 2018.

Żenkiewicz, M. Methods for the calculation of surface free energy of solids. Journal of Achievements in Materials and Manufacturing Engineering, v. 24, n. 1, p. 137–145, 2007.

Zhang, L.; Guo, J.; Yan, T.; Han Y. Fibroblast responses and antibacterial activity of Cu and Zn co-doped TiO2 for percutaneous implants. Applied Surface Science, v. 434, p. 633–642, 2018.

Zhao, L.; Wang, H.; Huo, K.; Cui, L.; Zhang, W.; Ni, H.; Zhang, Y.; Wu, Z.; Chu, P. K. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials, v. 32, n. 24, p. 5706–5716, 2011.




DOI: https://doi.org/10.34117/bjdv6n10-027

Refbacks

  • There are currently no refbacks.