Aumento da ingestão de açúcar afeta a capacidade da Drosophila melanogaster sobreviver em condições críticas / Increased sugar intake affects the Drosophila melanogaster ability to survive in critical conditions

Kally Portela, Esthéfani Lettnin, Ana Carolina Zago, Graciela Maldaner, Rafael Reis, Vera Maria de Souza Bortolini, Ana Zilda Ceolin Colpo

Abstract


Atualmente são crescentes as publicações apontando a composição da dieta como um fator que pode afetar o tempo de vida e o envelhecimento dos seres vivos, no entanto ainda não são claras as relações entre proporções adequadas de macronutrientes na dieta. O objetivo principal desse estudo foi validar em nosso laboratório o método Continuos Liquid Feeding (CLF) para alimentação de Drosophila melanogaster e verificar como diferentes concentrações de macronutrientes afetam o tempo de vida do inseto. Desenvolvemos os aparatos para CLF, aplicamos dietas com diferentes concentrações de carboidrato: proteína e avaliamos seus efeitos na longevidade e resistência ao frio e fome. Tomados em conjunto nossos dados sugerem que interações metabólicas associadas ao aumento no consumo de açúcar por Drosophila melanogaster afetam sua capacidade de sobreviver em condições críticas. 


Keywords


carboidrato, longevidade, Continuos Liquid Feeding

References


BAHADORANI, S. et al. The effects of vitamin supplementation on Drosophila life span under normoxia and under oxidative stress. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, v. 63, n. 1, p. 35–42, jan. 2008.

BOUGH, K. J. et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Annals of Neurology, v. 60, n. 2, p. 223–235, ago. 2006.

BURGER, J. M. S. et al. The functional costs and benefits of dietary restriction in Drosophila. Aging Cell, v. 6, n. 1, p. 63–71, fev. 2007.

COLINET, H. et al. Dietary sugars affect cold tolerance of Drosophila melanogaster. Metabolomics, v. 9, n. 3, p. 608–622, jun. 2013.

COLPO, A. C. et al. Ilex paraguariensis extracts extend the lifespan of Drosophila melanogaster fed a high-fat diet. Brazilian Journal of Medical and Biological Research, v. 51, n. 2, p. e6784, 2018.

COLPO, A. Z. C. et al. Atividade antioxidante da farinha de couve manteiga e seu efeito nos parâmetros bioquímicos em Drosophila Melanogaster. Brazilian Journal of Health Review, v. 2, n. 4, p. 2796–2801, 2019.

DEHGHAN, M. et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. The Lancet, v. 390, n. 10107, p. 2050–2062, nov. 2017.

DOBSON, A. J. et al. Nutritional Programming of Lifespan by FOXO Inhibition on Sugar-Rich Diets. Cell Reports, v. 18, n. 2, p. 299–306, jan. 2017.

HEINRICHSEN, E. T.; HADDAD, G. G. Role of High-Fat Diet in Stress Response of Drosophila. PLOS ONE, v. 7, n. 8, p. e42587, ago. 2012.

HUANG, J.-S. et al. Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells. Toxicology and Applied Pharmacology, v. 233, n. 2, p. 220–226, dez. 2008.

HWANGBO, D. S. et al. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature, v. 429, n. 6991, p. 562–566, jun. 2004.

INGRAM, D. K. et al. The potential for dietary restriction to increase longevity in humans: extrapolation from monkey studies. Biogerontology, v. 7, n. 3, p. 143–148, jun. 2006.

KELLY, T.; UNWIN, D.; FINUCANE, F. Low-Carbohydrate Diets in the Management of Obesity and Type 2 Diabetes: A Review from Clinicians Using the Approach in Practice. International Journal of Environmental Research and Public Health, v. 17, n. 7, p. 2557, abr. 2020.

LUSHCHAK, O. V. et al. Specific dietary carbohydrates differentially influence the life span and fecundity of Drosophila melanogaster. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, v. 69, n. 1, p. 3–12, jan. 2014.

PANDOLFI, I. A.; MOREIRA, L. Q.; TEIXEIRA, E. M. B. Segurança alimentar e serviços de alimentação-revisão de literatura. Brazilian Journal of Development, v. 6, n. 7, p. 42237–42246, 2020.

PENG, C. et al. Black tea theaflavins extend the lifespan of fruit flies. Experimental Gerontology, v. 44, n. 12, p. 773–783, dez. 2009.

PENG, C. et al. Blueberry extract prolongs lifespan of Drosophila melanogaster. Experimental Gerontology, v. 47, n. 2, p. 170–178, fev. 2012.

RAVICHANDRAN, M.; GRANDL, G.; RISTOW, M. Dietary Carbohydrates Impair Healthspan and Promote Mortality. Cell Metabolism, v. 26, n. 4, p. 585–587, out. 2017.

SANTOS, J. et al. Dietary Restriction and Nutrient Balance in Aging. Oxidative Medicine and Cellular Longevity, v. 2016, p. 4010357, 2016.

SLADE, J. D.; STAVELEY, B. E. Enhanced survival of Drosophila Akt1 hypomorphs during amino-acid starvation requires foxo. Genome, v. 59, n. 2, p. 87–93, fev. 2016.

SOARES, D. C. S. et al. Treatment with pentylenetetrazole (PTZ) and 4-aminopyridine (4-AP) differently affects survival, locomotor activity, and biochemical markers in Drosophila melanogaster. Molecular and Cellular Biochemistry, v. 442, n. 1–2, p. 129–142, maio 2018.

SOARES, J. J. et al. Continuous liquid feeding: New method to study pesticides toxicity in Drosophila melanogaster. Analytical Biochemistry, v. 537, p. 60–62, nov. 2017.

SOUZA, G. S. DE et al. Controlled traffic and soil physical quality of an Oxisol under sugarcane cultivation. Scientia Agricola, v. 72, n. 3, p. 270–277, jun. 2015.

TRINH, I.; BOULIANNE, G. L. Modeling obesity and its associated disorders in Drosophila. Physiology (Bethesda, Md.), v. 28, n. 2, p. 117–124, mar. 2013.

WALDBAUM, S.; PATEL, M. Mitochondrial Oxidative Stress In Temporal Lobe Epilepsy. Epilepsy research, v. 88, n. 1, p. 23–45, jan. 2010.

WILINSKI, D. et al. Rapid metabolic shifts occur during the transition between hunger and satiety in Drosophila melanogaster. Nature Communications, v. 10, n. 1, p. 4052, set. 2019.




DOI: https://doi.org/10.34117/bjdv6n9-363

Refbacks

  • There are currently no refbacks.