Optimization of enzymatic hydrolysis process of mechanically separated chicken meat / Otimização do processo de hidrólise enzimática de carne de frango mecanicamente separada

Alessandro Lima Sbeghen, Ilizandra Aparecida Fernandes, Clarice Steffens, Eunice Valduga, Vandré Barbosa Brião, Jamile Zeni, Juliana Steffens

Abstract


The main of this work was to evaluate the influence of the temperature, pH and enzyme concentration in the hydrolysis of mechanically separated chicken meat (MSCM) with and without previous heat treatment. The influence of pH (8.08 to 8.92), temperature (50.75ºC to 59.25ºC), enzyme concentration (0.38 to 4.62%) and reaction time (0.17 to 5.83 h) on the degree of hydrolysis and protein concentration were evaluated. The conditions that promoted the best degree of hydrolysis where 58°C, pH 8.5, enzyme concentration of 4.62 and reaction time of 3 h without previous heat treatment. The hydrolysed presented IC50 of 4 mg/mL. The MSCM hydrolyzed in these conditions is alternative of product with antioxidant properties with potential of application in foods.

 


Keywords


alcalase, heat treatment, protein, antioxidant activity.

Full Text:

PDF

References


AOAC- Official Methods Od Analysis. Association of Official Analytical Chemistry, 16ed, v. 1-2, USA, 1997.

AOAC- Official Methods Od Analysis. Association of Official Analytical Chemistry, 18ed, v. 1-2, USA, 2005.

Auriema, B. E., Dinalli, V. P., Kato, T., Yamaguchi, M. M., Marchi, D. F., & Soares, A. L. (2019). Physical and chemical properties of chicken mortadella formulated with Moringa oleifera Lam. Seed flour. Food Science and Technology, 39, 504-509. https://doi.org/10.1590/fst.25018

Bechaux, J., Gatellier, P., Page, J., Drillet, Y., & Lhoutellier, V. S. (2019). A comprehensive review of bioactive peptides obtained from animal byproducts and their applications. Food and Function, 10, 6244-6266. doi: 10.1039/c9fo01546a.

Borges, C. P., Rosa, V. A. & Da Silva, M. B. (2019). Factorial Design applied to the lignocellulose hydrolysis process. Brazilian Journal of Development, 5, 24718-24723. https://doi.org/10.34117/bjdv5n11-150

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft und Technologie, 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Brazil. (2000). Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Regulamento Técnico para Fixação de Identidade e Qualidade de Carne Mecanicamente Separada (CMS) de Aves, Bovinos e Suínos. Instrução Normativa nº 4.

Famenin, B. K., Hosseini, H., Zayeri, F., Ghanati, K., Lorenzo, J. M., Barba, F. J., & Khaneghah, A. M. (2019). Effect of mechanically deboning of chicken on the reological and sensory properties of chicken sausages. Jounal of food processing Preservation, 43, e13938. https://doi.org/10.1111/jfpp.13938

Hay, J. D., Currie, R. W., & Wolfe, F. H. (1973). Polyacrylamide disc gel electrophoretic of fresh and aged chicken muscle proteins in sodium dodecylsulfate. Journal of Food Science, 38(6), 987-1000. https://doi.org/10.1111/j.1365-2621.1973.tb02130.x

Júnior, M. M., Oliveira, T. P., Gonçalves, O. H., Leimann, F. V., Marques, L. L. M., Fuchs, R. H. B., Cardoso, F. A. R., & Droval, A. A. (2019). Substituition of synthetic antioxidante by curcumin microcrystals in mortadela formulations. Food Chemistry, 300, 1-7. https://doi.org/10.1016/j.foodchem.2019.125231

Karami, Z., & Akbari-Adergani, B. (2019). Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Tecnology, 56, 535-547. https://doi.org/10.1007/s13197-018-3549-4

Kurozawa, L. M., Park, K. J., & Hubinger, M. D. (2009). Influência das condições de processo na cinética de hidrólise enzimática de carne de frango. Ciência e Tecnologia de Alimentos, 29(3), 557-566. https://doi.org/10.1590/S0101-20612009000300017

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Review in Nature, 227, 680-685.

Liu, R., Xing, L., Fu, Q., Zhou, G., & Zhang, W. (2019). A review of antioxidant peptides derived from meat muscle and by-products. Antioxidants, 5(32), 1-15. doi: 10.3390/antiox5030032

Mora, L., Reig, M., & Toldrá, F. (2014). Bioactive peptides generated from meat industry by-products. Food Research International, 65, 344-349. https://doi.org/10.1016/j.foodres.2014.09.014

Neklyudov, A. D., Ivankin, A. N., & Berdutina, A. V. (2000). Properties and uses of protein hydrolysates (Review). Applied Biochemistry and Microbiology, 36(5), 452-459.

Nie, X., Xu, D., Zhao, L., & Meng, X. (2017). Antioxidant activities of chicken boné peptide fractions and their Maillard reaction products: Effects of diferente molecular weight distribuitions. International Journal of Food Properties, 20(1), S457-S466. https://doi.org/10.1080/10942912.2017.1299176

Nwachukwu, I. D., & Aluko, R. (2019). Structural and functional properties of food protein-derived antioxidante peptides. Jounal of Food Biochemistry, 43, e12761. https://doi.org/10.1111/jfbc.12761

Porzio, M. A., & Pearson, A. M. (1977). Improved Resolution of Miofibrilar Proteins with sodium dodecyl sulfate-polyacrylamide gel eletrophoresis. Biochimica et Biophysica Acta, 490(1), 27- 34. https://doi.org/10.1016/0005-2795(77)90102-7

Rossi, D. M., Flôres, S. H., Heck, J. X., & Ayub, M. A. Z. (2009). Production of high-protein hydrolysate from poultry industry residue and their molecular profiles. Food Biotechnology, 23(3), 229-242. https://doi.org/10.1080/08905430903102828

Sun, Y., Pan, D., Guo, Y., & Li, J. (2012). Purification of chicken breast protein hydrolysate and analysis of its antioxidant activity. Food and Chemical Toxicology, 50:3397, 3404. https://doi.org/10.1016/j.fct.2012.07.047

Wu, H., Pan, B. S., Chang, C., & Shiau, C. (2005). Low-molecular-weight as related to antioxidant properties chicken essence. Journal of Food and Drug Analysis, 13(2), 176-183. https://doi.org/10.38212/2224-6614.2539

Xiong, Q., Zhang, M., Wang, T., Wang, D., Sun, C., Bian, H., Li, P., Zou, Y., & Xu, W. (2020). Lipid oxidation induced by heating in chicken meat and the relationship with oxidants and antioxidant enzymes activities. Poultry Science, 99(3), 1761-1767. https://doi.org/10.1016/j.psj.2019.11.013




DOI: https://doi.org/10.34117/bjdv6n9-223

Refbacks

  • There are currently no refbacks.