An assessment of different turbulence models on a cfd simulation of air flow past a s814 airfoil / Uma avaliação de diferentes modelos de turbulência numa simulação cfd de fluxo de ar passando por um aerofólio s814

Eduardo Corte Real Fernandes, Allan Cavalcante Belo, Alex Maurício Araújo, Augusto Antônio Coutinho da Silva, Ciro Cordeiro de Araújo Bezerra, Guilherme José de Arruda Moura Rocha


Turbulence modeling is a crucial part of any CFD simulation, the selection of an appropriate method allows for precise validation and reliable results. This paper aims to investigate which turbulence model is best suitable for a simulation over a S814 airfoil profile at different angles of attack using CFD software ANSYS-Fluent. Literature usually recommends two models for this kind of simulation: κ – ω Shear Stress Transport and Spalart-Allmaras. Both models strength and weakness are tested by performing simulations at the angles of attack: 0º, 5º, 10º, 15º, and 20º. Results were validated with experiments reported in literature and showed that Spalart-Allmaras performed better for lower angles of attack, whereas κ – ω Shear Stress Transport presented the best results at the higher angles of attack.


CFD, Turbulence Modeling, ANSYS, Spalart-Allmaras, κ – ω SST.

Full Text:



Anderson Jr, John D. Fundamentos de Engenharia Aeronáutica. AMGH Editora, 2015.

ANSYS® Academic Research, Release 15.0, Help System, “ANSYS Fluent Theory Guide”, 2013.

Bordin, Franciele Stail. "Análise do efeito da interação fluido-estrutura nas forças fluidodinâmicas em um elemento de pá flexível 3D." (2014).

Cengel, Yunus A., and John M. Cimbala. Mecânica dos fluidos-3. AMGH Editora, 2015.

De Magalhães Melo, G. G..; Oliveira, L. A.; Araújo, A. M.; Asibor, A. I.; De Medeiros, A. L. R.; De Oliveira Filho, O. D. Q.; Espíndola, R. L.; Machado, H. C. M.; Jaouen, P.; Noguerra, R. E. “Application of good CFD simulation practices to s814 airfoil profile". In: International Congress of Mechanical Engineering, 22, 2013, Ribeirão Preto. Anais… Ribeirão Preto, 2013, p 3980 – 3989.

Eleni, Douvi C., Tsavalos I. Athanasios, and Margaris P. Dionissios. "Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil." Journal of Mechanical Engineering Research4.3 (2012): 100-111.

Fernandes, M. P. G.; Rocha, P. A. C.; Carneiro, F. O. M. “Avaliação de resultados de simulação numérica de escoamento sobre o perfil NACA 2410 utilizando o openfoam com diferentes modelos de turbulência”. In: Congresso Nacional de Engenharia Mecânica, 2010, Campina Grande. Anais… Campina Grande, 2010, 9p.

Franke, J.; Hirsch, C.; Jensen, A. G.; Krüs, H. W.; Schatzmann, M.; Westbury, P. S.; Wisse, J. A.; Wright, N. G. “Recommendations on the use of CFD in wind engineering." Cost action C. Vol. 14. 2004.

Hao. Y.; Liu, Yangwei.; Le, F.; Lipeng, L. "Modification of Spalart-Allmaras turbulence model for predicting S825 airfoil aerodynamic performance." Applied Mechanics and Materials. Vol. 543. Trans Tech Publications, 2014.

Hernández Gómez, Antonio. “Computational Fluid Dynamics study of 2D vertical axis turbines for application to wind and tidal energy production”. BS thesis. Universitat Politècnica de Catalunya, 2014.

Janiszewska, J. M.; Ramsay, R. R.; Hoffmann, M. J.; Gregorek, G. M. 1996. Effects of grit roughness and pitch oscillations on the S814 airfoil. No. NREL/TP--442-8161. National Renewable Energy Lab., Golden, CO (United States).

Jonkman, J., and Marshall L. Buhl Jr. "NWTC information portal (FAST)." 2015-05-15]. https://nwtc. nrel. gov/FAST (2014).

Liu, Z.; Takeshi, I.; He, X.; Niu, H. "Les study on the turbulent flow fields over complex terrain covered by vegetation canopy." Journal of Wind Engineering and Industrial Aerodynamics 155 (2016): 60-73.

Menter, F. R., M. Kuntz, and R. Langtry. "Ten years of industrial experience with the SST turbulence model." Turbulence, heat and mass transfer 4.1 (2003): 625-632.

Netto, D. C.; Camacho, R. G. R.; Souza, D. S. Estudo Comparativo de metodologias para solução numérica da camada-limite turbulenta sobre o aerofólio nrel s809. Brazilian Journal of Development v. 5, n. 9, p. 16180-16198.fe 2019

Nordanger, Knut.; Holdahl, R.; Kvamsdal, T.; Kvarving, A. M.; Rasheed, A. "Simulation of airflow past a 2D NACA0015 airfoil using an isogeometric incompressible Navier–Stokes solver with the Spalart–Allmaras turbulence model." Computer Methods in Applied Mechanics and Engineering 290.

Pellerin, N.; Leclaire, S; Reggio, M. "An implementation of the Spalart–Allmaras turbulence model in a multi-domain lattice Boltzmann method for solving turbulent airfoil flows." Computers & Mathematics with Applications 70.12 (2015): 3001-3018.

Ribeiro, A.F.P., Awruch A.M., Gomes, H.M. 2011. "An airfoil optimization technique for wind turbines." Applied Mathematical Modeling 36.10 (2012): 4898-4907.

Rocha, PA Costa.; Rocha, H. H. B.; Carneiro, F. O. M.; Bueno, A. V. "k–ω SST (shear stress transport) turbulence model calibration: A case study on a small scale horizontal axis wind turbine." Energy 65 (2014): 412-418.

Smyth, Thomas AG. "A review of Computational Fluid Dynamics (CFD) airflow modeling over aeolian landforms." Aeolian Research 22 (2016): 153-164.

Spalart, P. and Allmaras, S. A. (1992). "A one equation turbulence model for aerodynamic flows." RECHERCHE AEROSPATIALE-FRENCH EDITION- (1994): 5-5.

Versteeg, H. K.; Malalasekera. An introduction to computational fluid dynamics: the finite volume method. Pearson Education, 2007.

Wang, Lin.; Liu, Xiongwei.; Kolios, Athanasios. "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modeling." Renewable and Sustainable Energy Reviews 64 (2016): 195-210.

Wilcox, D. C. Turbulence Modeling for CFD. Third Edition. La Canãda, California: DCW Industry, 2006. 522 p.

Wu, Y. T.; Porté-Agel, F. (2012). "Atmospheric turbulence effects on wind-turbine wakes: An LES study." Energies 5.12 (2012): 5340-5362.



  • There are currently no refbacks.