Bioprospection of cellulose-decomposers soil bacteria / Bioprospecção de bactérias do solo degradadoras de celulose

Yohana Melania López Hernández, Anelise Vicentini Kuss, Greice Hartwig Schwanke Peil, José Pablo Villarreal, Giovana Duzzo Gamaro


Soil microorganisms have a high bacterial biodiversity and an important group is the cellulose-decomposers bacteria, which through their endoglucanases, exoglucanases and β-glycosidases enzymatic complexes are responsible for the planet organic biomass degradation. Therefore, to understand and apply their potentials in the biotechnology area, is necessary to know their biologic, biochemical and environmental characteristics and proprieties of the microorganisms involved in these degradation processes. Ten bacteria isolates where obtained. To verify the degradation, the filter paper and solid medium Luria-Bertani was used. In the extracellular enzymatic production analysis, the substrate used was the Whatman N°1 filter paper for the ß-1,4 exoglucanase and carboxymethyl cellulose for the ß-1,4 endoglucanase. Also the microbial biomass analysis was made. The results showed that, the most effective cellulose degradation isolates having as substrates, the BC5 and the BC2 bacteria respectively. In the endoglucanase ß-1,4 enzymatic activity was the BC5 and for the ß-1,4 exoglucanase was the BC8, meanwhile for the microbial biomass production, the best result was for the BC9 isolate bacteria. The results showed that between the different bacteria species from the different locals, significant differences were presented, when each of the analysis were compared and therefore this can be associated to the different types of ecosystems and to the biochemical and environmental characteristics in each type of soil, having different mechanisms directly related with the cellulose degradation. Therefore, these microorganisms have a potential use in diverse biotechnological and bioremediation cellulose degradation processes.



cellulolytic enzymes, cellulolytic microorganisms, endoglucanase, exoglucanase, soil, microbiology environmental.

Full Text:



ARAÚJO SILVA, VM.; ESTEVES DE BRITO F.; ALVES K.; DA SILVA.; MR MIRANDA, M; SILVEIRA, SC (2015) Atividade enzimática de actinobactérias do semiárido. Revista brasileira de geografia física, 08: 60-572.

BICHET-HEBE, AM.; POURCHER, I.; SUTRA, C., COMEL, G.; MOGUEDET (1999) Detection of a whitening fluorescent agent as an indicator of white paper biodegradation: a new approach to study the kinetics of cellulose hydrolysis by mixed cultures. Journal of microbiological methods, 37, 2: 101-109

CORRÊA RODRIGUES, J. G (2019). Producão de celulases por actinobactèrias cultivadas em diferentes substratos. Brazilian Journal of Development, 11

CRIQUET, S (2002) Measurement and characterization of cellulase activity in sclerophyllous forest litter. Journal Microbiology Methods, 50: 165-173

CUNHA-SANTINHO, M. B (2003) Atividade enzimática, cinettica e modelagem matemática da decomposição de Utricularia breviscapa da lagoa do Óleo. (Estação ecologicade Jatai, Luiz Antonio), Programa de Pós-graduação de São Carlos, São Carlos, pp 140

DASHTBAN, M.; MAKI, M.; LEUNG, KT.; MAO, C.; QIN, W (2010) Cellulase activities in biomass conversion: measurement methods and comparison. Critical Reviews Biotechnology, 30: 302–309

DOS SANTOS, TC.; FILHO, GA.; HONÓRIO ROCHA, TJ.; FERREIRA, AS.; DINIZ GA.; FRANCO, M (2013) Produção e quantificação de celulases por meio da fermentação em estado sólido de resíduos agroindustriais scientia agraria paranaensis - sap mal. Cdo. Rondon, 12, 2: 115-123

EKEPERIGIN, M (2007) Preliminary studies of cellulase production by acinetobacter anitratus and branhamella sp. African journal of biotechnology. 6, 1: 28-33

EVELEIGH, DE.; MANDELS, M.; ANDREOTTI, R.; ROCHE, C (2009) Measurement of saccharifying cellulase. Biotechnology biofuels, 2: 1–8

FARNET, AM.; QASEMIAN, I.; GUIRAL, D.; FERRE, E (2010) A modified method based on arsenomolybdate complex to quantify cellulase activities: application to litters. Pedobiologia, 53: 159–160

FERBIYANTO, A.; RUSMANA, I.; RAFFIUDIN, R (2015) Characterization and identification of cellulolytic bacteria from gut of worker macrotermesgilvus. Hayati journal of biosciences, 22: 197-200

FREUND, RJ.; LITTELL, RC (1991) Sas system for regression. Sas institute inc., north carolina, usa, pp 127-150

GEORGE, SP.; AHMAD, A.; RAO, MB (2001) Studies on carboxymethyl cellulose roduced by an alkalothermophilic actinomycete. Bioresource technology, 77: 171-175

GUPTA, PK (2012) Isolation of cellulose-degrading bacteria and determination of their cellulolytic potencial. International journal of microbiology, 1-5.

HATAMI, S.; ALIKHSNI, HA.; BESHARATI, H.; SALEHRASTIN, N.; AFROUSHEH, M.; JAHROMI, ZY (2008) Investigation of aerobic cellulolytic bacteria in some of noeth forest and farming soils. The american-eurasian journal of agricultural & environmental sciences, 5: 713–716

HELBERT, W.; CHANZY, H.; HUSUM, TL.; SCHLEIN, M.; ERNST, S (2003) Fluorescent cellulose microfibrils as substrate for the detection of cellulase activity. Biomacromolecules, 4: 481–487

KASANA, RS.; SALWAN, R.; DHAR, H.; DUTT, S.; GULATI, A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Current microbiology, 57: 503-507.

KHURI, IJ.; CORNELL, JA (1989) Response surfaces: designs and analyses, marcel dekker, new York.

LEALEM, F.; GASHE, B.A (1994) Amylase production by a gram-positive bacterium isolated from fermenting tef. (Eraglostis tef.). Journal Applied Bacteriology 77: 348-352

LU, WJ.; WANG, HT.; YANG, ZJ.; WANG, ZC.; NIE, YF (2006) isolation and characterization of mesophilic cellulose-degrading bacteria from flower stalks-vegetable waste co-composting system. Journal of general and applied microbiology, 51, 6: 353–360

LU, WJ., WANG, HT.; NIE, YF.; WANG, ZC.; HUANG, DY.; QIU, X.; CHEN, JC (2004) Effect of inoculating flower stalks and vegetable waste with ligno-cellulolytic microorganisms on the composting process. Journal of environmental science and health 39, 5-6: 871-887

LYNCH, JS.; SLATER, JH.; BENNETT, JH.; SARPER, SHT (1981) Cellulase activities of some aerobic microorganisms isolated from soil. Journal of general microbiology 127: 231-236

LYND, LW.; WEIMER, PJ.; VAN ZYL, WH.; PRETORIUS, IS.(2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiology Molecular Biology Reviews., 66: 506-577

MIKÁN, J.; CASTELLANOS, D (2004) Screening para el aislamiento y caracterización de microorganismos y enzimas potencialmente útiles para la degradación de celulosas y hemicelulosas. Revista Colombiana Biotecnology. 4 (1): 58-71

MULLINGS, R (2005) Measurement of saccharification by cellulases. Enzyme microbial Technology., 7: 586–591

MYERS, RH (1971) Response surface methodology, allyn and bacon, boston

NELSON, NA (1994) Photometric adaptation of somogyi method for the determination of glucose. Journal Biology Chemistry 153: 375-380

PERÉZ, J.; MUÑOZ, JD.; RUBIA, T.; MARTÍNEZ, J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology 5: 53–63

PRATIMA, G.; KALPANA, S.; AVINASH, S (2012) Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. International journal of microbiology, 1-5.

RAMÍREZ, P.; COHA, JM (2013) Degradación enzimática de celulosa por actinomycetes termófilos: aislamiento, caracterización y determinación de la actividad celulolítica. Revista peruana de biología 10 (1): 67-77.

REINHOLD-HUREK, B (1993) Cloning, expression in escherichia coli and characterization of cellulolytic enzymes azoarcus sp. A rootin-vading diazotroph. Journal of bacteriology, 175: 7056-7065.

ROBSON, L.; CAMBLISS, HC (1989) Cellulases of bacterial origin. Enzyme and microbial technology 11: 626-644

SILVA, NA.; DA SILVA, AP.; BATISTA, SB.; HARDOIM, EI (2012) Análise quali-quantitativa de bactérias com atividades enzimáticas celulolíticas e proteolíticas isoladas de solo adicionado de vinhaça. Revista de biologia e ciências da terra, 12

SOMOGYI, M (1952) Notes en sugar determination. Journal of Biologycal Chemistry, 195 19-23

VAITHANOMSAT, PC (2009) Bioethanol production from enzymatically saccharified sunflower stalks using steam explosion as pretreatment. Proceedings of world academy of science, engineering and technology, 37: 140-143

VINOGRADOVA, SP.; KUSHNIR, SN (2003) Biosynthesis of hydrolytic enzymes during cocultivation of macro- and micromycetes. Applied Biochemistry and Microbiology, 39: 573-575

XU, X.; LIU, Y.; CUI, Y.; CHENG, Q.; ZHANG, Z.; LU, JH.; MENG, Q.; TENG, I.; REN, X (2016) Measurement of filter paper activities of cellulase with microplate-based assay. Saudi journal of biological sciences, 23, 1: s93-s98



  • There are currently no refbacks.