Western-style diet changes murinometric and metabolic parameters of rat offspring in time-specific windows / A dieta do estilo ocidental altera parâmetros murinométricos e metabólicos da própria de rat em janelas específicas

Elizabeth do Nascimento, Giselia de Santana Muniz, Amanda Alves Marcelino da Silva, Raquel de Araújo Santana, Diogo Antonio Alves de Vasconcelos, Taisy Cinthia Ferro Cavalcante

Abstract


The present study evaluated the effects of the western-style diet in the time-specific windows of rodents. Male Wistar rats were divided into three groups fed on a Control diet during all experimental period (CC); a western-style diet after lactation (CW); and a westernized diet throughout entire experimental period (WW). Body weight, food and energy intake, abdominal fat, glucose tolerance, biochemical parameters and serum hormones were evaluated. Higher body weight (CC=408.6±11.3g; CW=474.1±9.2g; WW=475.8±16.3g, p<0.001), increased abdominal fat (CC=12.6±0.8g; CW=34.1± 2.3g; WW=33.2± 2.4g, p<0.001), reduced food intake (CC=26.3±0.8g; CW=17.0±0.6; WW=18.4±0.9g, p<0.001), and similar energetic intake were found among the groups fed on the western-style diet regardless to the exposure time. Also, the area under the curves of glucose tolerance test, glucose, triacylglycerol, VLDL-c and total cholesterol blood levels were higher in the western-style diet groups compared to the control groups (p<0.01). However, levels of hormones were different according to specific windows of dietary exposure. The CW group showed higher corticosterone (CC=263.4± 109.1;CW= 339.9±16.6; WW=305.5±16.2ng/mL, p<0.001) and leptin levels (CC=8.2 0.7;CW=14.5 1.4;WW=9.1 0.7ng/mL p<0.001); and the WW group showed raised insulin levels (CC=6.7±0.3;CW=8.0±0.3;WW=10.5±0.8ng/mL, p<0.001). Then, the western-style diet enhanced signals of metabolic imbalance in both groups, but the outcomes varied according to the windows of dietary exposure.


Keywords


Western-style diet; glucose tolerance, hyperinsulinemia, hyperleptinemia, abdominal fat, rats.

Full Text:

PDF

References


Astorg P, Arnault N, Czernichow S, Noisette N, Galan P & Hercberg S (2004). Dietary intakes and food sources of n-6 and n-3 PUFA in French adult men and women. Lipids, 39: 527-535.

Bayne K. Revised Guide for the Care and Use of Laboratory Animals available. Americ Physiolog Soc. The Physiologist. 1996; 39(4): 199-208

Bayol S, Jones D, Goldspink G & Stickland NC (2004). The influence of undernutrition during gestation on skeletal muscle cellularity and on the expression of genes that control muscle growth. Br J Nutr, 91: 331-339.

Bayol SA, Farrington SJ & Stickland NC (2007). A maternal 'junk food' diet in pregnancy and lactation promotes an exacerbated taste for 'junk food' and a greater propensity for obesity in rat offspring. Br J Nutr, 98: 843-851.

Bernardis LL (1970). Prediction of carcass fat, water and lean body mass from Lee's "nutritive ratio" in rats with hypothalamic obesity. Experientia, 26: 789-790.

CARVALHO, MF, Costa MKME, Muniz GS, Manhãs de Castro R, Nascimento E. Experimental diet based on the foods listed in the Family Budget Survey is more detrimental to growth than to the reflex development of rats. Revista de Nutrição, v. 26, n. 2, p. 177-196, 2013. https://doi.org/10.1590/S1415-52732013000200006

Cerf ME (2010). High fat programming of beta-cell failure. Adv Exp Med Biol, 654: 77-89. doi: 10.1007/978-90-481-3271-3_5.

Cerf ME, Chapman CS & Louw J (2012). High-fat programming of hyperglycemia, hyperinsulinemia, insulin resistance, hyperleptinemia, and altered islet architecture in 3-month-old wistar rats. ISRN Endocrinol, 2012: 627270. doi: 10.5402/2012/627270

Cerf ME, Williams K, Nkomo XI, Muller CJ, Du Toit DF, Louw J & Wolfe-Coote SA (2005). Islet cell response in the neonatal rat after exposure to a high-fat diet during pregnancy. Am J Physiol Regul Integr Comp Physiol, 288: R1122-1128.doi: 10.1152/ajpregu.00335.2004

Deckelbaum RJ & Williams CL (2001). Childhood obesity: the health issue. Obes Res, 9: 239S-243S.

Després JP, Lemieux I & Prud’homme D (2001). Treatment of obesity: need to focus on high risk abdominally obese patients. BMJ, 322: 716–720.

Donovan DS, Solomon CG, Seely EW, Williams GH & Simonson DC (1993). Effect of sodium intake on insulin sensitivity. Am J Physiol, 264: E730-734. DOI:10.1152/ajpendo.1993.264.5.E730

Drewnowski A & Almiron-Roig E (2010). Fat Detection: Taste, Texture, and Post Ingestive Effects: Human Perceptions and Preferences for Fat-Rich Foods. Montmayeur JP, le Coutre J, editors.

Eguchi Y, Mizuta T, Sumida Y, Ishibashi E, Kitajima Y, Isoda H, Horie H, Tashiro T, Iwamoto E, Takahashi H, Kuwashiro T, Soejima S, Kawaguchi Y, Oda Y, Emura S, Iwakiri R, Ozaki I, Eguchi T, Ono N, Anzai K, Fujimoto K & Koizumi S (2011). The pathological role of visceral fat accumulation in steatosis, inflammation, and progression of nonalcoholic fatty liver disease. J Gastroenterol, 46: 70-78. doi: 10.1007/s00535-010-0340-3.

Elahi MM, Cagampang FR, Mukhtar D, Anthony FW, Ohri SK & Hanson MA (2009). Long-term maternal high-fat feeding from weaning through pregnancy and lactation predisposes offspring to hypertension, raised plasma lipids and fatty liver in mice. Br J Nutr, 102: 514-519. doi: 10.1017/S000711450820749X.

Ferro Cavalcante TC, Lima da Silva JM, da Marcelino da Silva AA, Muniz GS, da Luz Neto LM, Lopes de Souza S, Manhaes de Castro R, Ferraz KM & do Nascimento E (2013). Effects of a westernized diet on the reflexes and physical maturation of male rat offspring during the perinatal period. Lipids, 48: 1157-1168. doi: 10.1007/s11745-013-3833-z.

Fraulob JC, Souza-Mello V, Aguila MB & Mandarim-de-Lacerda CA (2012). Beneficial effects of rosuvastatin on insulin resistance, adiposity, inflammatory markers and non-alcoholic fatty liver disease in mice fed on a high-fat diet. Clin Sci (Lond), 123: 259-270.

Kissebah AH & Krakower GR. Regional adiposity and morbidity. Physiol Rev, 74: 761– 811. doi:10.1152/physrev.1994.74.4.761

Friedewald WT, Levy RI & Fredrickson DS (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem, 18: 499-502.

Gluckman PD, Hanson MA & Spencer HG (2005). Predictive adaptive responses and human evolution. Trends Ecol Evol, 20: 527-533.

Gregorio BM, Souza-Mello V, Mandarim-de-Lacerda CA & Aguila MB (2013). Maternal high-fat diet is associated with altered pancreatic remodelling in mice offspring. Eur J Nutr, 52:759-769. doi: 10.1007/s00394-012-0382-9.

Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F, American Heart Association, National Heart. Lung, & Blood Institute (2005). Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation, 112: 2735-52. doi: 10.1161/circulationaha.105.169404.

Hansen MJ, Jovanovska V & Morris MJ (2004). Adaptive responses in hypothalamic neuropeptide Y in the face of prolonged high-fat feeding in the rat. J Neurochem, 88: 909-916.

Howie GJ, Sloboda DM, Kamal T & Vickers MH (2009). Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol, 587:905-915. doi: 10.1113/jphysiol.2008.163477.

Jones HN, Woollett LA, Barbour N, Prasad PD, Powell TL & Jansson T (2009). High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J, 23: 271-278. doi: 10.1096/fj.08-116889.

Khan I, Dekou V, Hanson M, Poston L & Taylor P (2004). Predictive adaptive responses to maternal high-fat diet prevent endothelial dysfunction but not hypertension in adult rat offspring. Circulation, 110: 1097-1102.

Le Floch JP, Escuyer P, Baudin E, Baudon D & Perlemuter L (1990). Blood glucose area under the curve. Methodological aspects. Diabetes Care, 13: 172-175.

Mathieu P, Poirier P, Pibarot P, Lemieux I & Despres JP (2009). Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension, 53: 577-584. doi: 10.1161/HYPERTENSIONAHA.108.110320.

Myers MG & Greenwald-Yarnell M. (2013). Leptin. Handbook of Biologically Active Peptides, 1129–1134. doi:10.1016/b978-0-12-385095-9.00152-4

Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani F, Fernandes AA, Cicogna AC& Novelli Filho JL (2007). Anthropometrical parameters and markers of obesity in rats. Lab Anim, 41: 111-119.

Ogihara T, Asano T, Ando K, Sakoda H, Anai M, Shojima N, Ono H, Onishi Y, Fujishiro M, Abe M, Fukushima Y, Kikuchi M & Fujita T (2002). High-salt diet enhances insulin signaling and induces insulin resistance in Dahl salt-sensitive rats. Hypertension, 40: 83-89.

Oliveira TW, Leandro CG, de Jesus Deiro TC, dos Santos Perez G, da Franca Silva D, Druzian JI, Couto RD & Barreto-Medeiros JM (2011). A perinatal palatable high-fat diet increases food intake and promotes hypercholesterolemia in adult rats. Lipids, 46: 1071-1074. doi: 10.1007/s11745-011-3604-7

Reeves PG (1997). Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr, 127: 838S-841S.

Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH, Piersma AH, Ozanne SE, Twinn DF, Remacle C, Rowlerson A, Poston L & Taylor PD (2008). Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension, 51: 383-392.

Sanchez‐Muniz FJ & BASTIDA S (2008). Do not use the Friedewald formula to calculate LDL‐cholesterol in hypercholesterolaemic rats. Eur J Lipid Sci Technol, 110: 295-301. doi.org/10.1002/ejlt.200700280.

Sharma S, Murphy SP, Wilkens LR, Shen L, Hankin JH, Henderson B & Kolonel LN (2003). Adherence to the Food Guide Pyramid recommendations among Japanese Americans, Native Hawaiians, and whites: results from the Multiethnic Cohort Study. J Am Diet Assoc, 103: 1195-1198.

Srinivasan M, Katewa SD, Palaniyappan A, Pandya JD & Patel MS (2006). Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood. Am J Physiol Endocrinol Metab, 291: E792-799. Doi:10.1152/ajpendo.00078.2006

Tranchida F, Tchiakpe L, Rakotoniaina Z, Deyris V, Ravion O & Hiol A (2012). Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats. J Zhejiang Univ Sci B, 13: 307-317. doi: 10.1631/jzus.B1100090

Wells L, Vosseller K & Hart GW (2003). A role for N-acetylglucosamine as a nutrient sensor and mediator of insulin resistance. Cell Mol Life Sci, 60: 222-228.

WHO (2018). Obesity and overweight. Fact sheet. Updated June 2016. World Health Organization.




DOI: https://doi.org/10.34117/bjdv6n7-470

Refbacks

  • There are currently no refbacks.