Influence of additives in the transesterification of crude coconut oil catalyzed by Burkholderia cepacia lipase immobilized onto agro-industrial waste fibers / Influência de aditivos na transesterificação de óleo de coco bruto catalisado por lipase de Burkholderia cepacia imobilizada em fibras de resíduo agroindustrial

Anderson dos Santos Barbosa, Klebson da Cruz Silva, Lays Carvalho de Almeida, Danyelle Andrade Mota, Lisiane dos Santos Freitas, Benevides Costa Pessela Joao, Álvaro Silva Lima, Cleide Mara Faria Soares

Abstract


In this study was verified the influence of different additives in the transesterification reaction of the crude coconut oil catalyzed with lipase from Burkholderia cepacia  immobilized by physical adsorption onto palm fiber originated from agroindustrial wastes. Reactions was performed under the conditions: molar ratio 1:7 (oil:alcohol), 10 % biocatalyst immobilized for 96 h at 40 °C in the presence in different concentrations of additives (water, tert-butanol, molecular sieve and protic ionic liquids). The results showed that the use of all the additives in this study did not increase conversion to ethyl esters. The maximum conversion in the absence of the additives was 72 %, in the presence of water 45 ± 2 %, molecular sieve 53 ± 2 % and tert -butanol 59 ± 2 %, respectively, all in the lowest concentrations. For ionic liquids, those with higher alkyl chains had the highest conversions, but lower than in their absence.


Keywords


Additives, transesterification, lipase, immobilization, agroindustrial wastes

Full Text:

PDF

References


BABAKI, M.; YOUSEFI, M.; HABIBI, Z.; BRASK, J.; MOHAMMADI, M. Preparation of highly reusable biocatalysts by immobilization of lipases on epoxy-functionalized silica for production of biodiesel from canola oil. Biochemical Engineering Journal, vol. 101, p. 23–31, 2015. https://doi.org/10.1016/j.bej.2015.04.020.

BABAKI, M.; YOUSEFI, M.; HABIBI, Z.; MOHAMMADI, M. Process optimization for biodiesel production from waste cooking oil using multi-enzyme systems through response surface methodology. Renewable Energy, vol. 105, p. 465–472, 2017. https://doi.org/10.1016/j.renene.2016.12.086.

BABAKI, M.; YOUSEFI, M.; HABIBI, Z.; MOHAMMADI, M.; BRASK, J. Effect of water, organic solvent and adsorbent contents on production of biodiesel fuel from canola oil catalyzed by various lipases immobilized on epoxy-functionalized silica as low cost biocatalyst. Journal of Molecular Catalysis B: Enzymatic, vol. 120, p. 93–99, 2015. DOI 10.1016/j.molcatb.2015.06.014. Available at: http://dx.doi.org/10.1016/j.molcatb.2015.06.014.

BARBOSA, A. D. S.; DE O. SILVA, M. A.; CARVALHOA, N. B.; MATTEDI, S.; IGLESIAS, M. A.; FRICKS, A. T.; LIMA, A. S.; FRANCESCHI, E.; SOARES, C. M. F. Immobilization of lipase by encapsulation in silica aerogel. Quimica Nova, vol. 37, no. 6, 2014. https://doi.org/10.5935/0100-4042.20140155.

BARBOSA, A. S.; SANTOS, S. V. G.; ALMEIDA, L. C.; KOPP, W.; TARDIOLI, P. W.; GIORDANO, R. de L. C.; LIMA, Á. S.; SOARES, C. M. F. Hydrophobic immobilization of Burkholderia cepacia lipase onto octyl-silica for synthesis of flavors esters. Brazilian Journal of Development, vol. 6, no. 5, p. 27145–27170, 2020. https://doi.org/10.34117/bjdv6n5-242.

BARBOSA, A.S.; MARQUES, A. N.; SILVA, K. C.; MOTA, D. A.; LIMA, A. S.; SOARES, C. M. F. Utilização de lipase imobilizada em resíduos agroindustrial na produção de ésteres etílicos. In: Anais do XXI Congresso Brasileiro de Engenharia Química. Fortaleza, 2016a.

BARBOSA, A. S.; LISBOA, J. A.; SILVA, M. A. O.; CARVALHO, N. B.; PEREIRA, M. M.; FRICKS, A. T.; MATTEDI, S.; LIMA, Á. S.; FRANCESCHI, E.; SOARES, C. M. F. The novel Mesoporous silica aerogel modified with protic ionic liquid for lipase immobilization. Quimica Nova, vol. 39, no. 4, p. 415–422, 2016b. https://doi.org/10.5935/0100-4042.20160042.

BARBOSA, M. S.; FREIRE, C. C. C.; ALMEIDA, L. C.; FREITAS, L. S.; SOUZA, R. L.; PEREIRA, E. B.; MENDES, A. A.; PEREIRA, M. M.; LIMA, Á. S.; SOARES, C. M. F. Optimization of the enzymatic hydrolysis of Moringa oleifera Lam oil using molecular docking analysis for fatty acid specificity. Biotechnology and Applied Biochemistry, vol. 66, no. 5, p. 823–832, 1 Sep. 2019. DOI 10.1002/bab.1793. Available at: https://doi.org/10.1002/bab.1793.

CAO, H.; WANG, M.; DENG, L.; LIU, L.; SCHWANEBERG, U.; TAN, T.; WANG, F.; NIE, K. Sugar-Improved Enzymatic Synthesis of Biodiesel with Yarrowia lipolytica Lipase 2. Energy and Fuels, vol. 31, no. 6, p. 6248–6256, 2017. https://doi.org/10.1021/acs.energyfuels.7b01091.

CARVALHO, N. B.; VIDAL, B. T.; BARBOSA, A. S.; PEREIRA, M. M.; MATTEDI, S.; FREITAS, L. D. S.; LIMA, Á. S.; SOARES, C. M. F. Lipase immobilization on silica xerogel treated with protic ionic liquid and its application in biodiesel production from different oils. International Journal of Molecular Sciences, vol. 19, no. 7, 2018. https://doi.org/10.3390/ijms19071829.

LI, N.-W.; ZONG, M.-H.; WU, H. Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process Biochemistry, vol. 44, no. 6, p. 685–688, 2009. DOI https://doi.org/10.1016/j.procbio.2009.02.012. Available at: http://www.sciencedirect.com/science/article/pii/S1359511309000543.

LI, X.; HE, X.-Y.; LI, Z.-L.; WANG, Y.-D.; WANG, C.-Y.; SHI, H.; WANG, F. Enzymatic production of biodiesel from Pistacia chinensis bge seed oil using immobilized lipase. Fuel, vol. 92, no. 1, p. 89–93, 2012. DOI 10.1016/j.fuel.2011.06.048. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0016236111003668.

LI, Y. X.; DONG, B. X. Optimization of Lipase-Catalyzed Transesterification of Lard for Biodiesel Production Using Response Surface Methodology. Brazilian Archives of Biology And Technology, vol. 59, no. December, p. 504–515, 2016. https://doi.org/10.1007/s12010-008-8377-y.

MARTINS, S. R.; DOS SANTOS, A.; FRICKS, A. T.; LIMA, Á. S.; MATTEDI, S.; SILVA, D. P.; SOARES, C. M.; CABRERA‐PADILLA, R. Y. Protic ionic liquids influence on immobilization of Lipase Burkholderia cepacia on hybrid supports. Journal of Chemical Technology & Biotechnology, vol. 92, no. 3, p. 633–641, 24 Jun. 2016. DOI 10.1002/jctb.5044. Available at: https://doi.org/10.1002/jctb.5044.

MOHIDEM, N. A.; BIN MAT, H. Catalytic activity and stability of laccase entrapped in sol-gel silica with additives. Journal of Sol-Gel Science and Technology, vol. 61, no. 1, p. 96–103, 2012. https://doi.org/10.1007/s10971-011-2596-3.

MOTA, D. A.; RAJAN, D.; HEINZL, G. C.; OSÓRIO, N. M.; GOMINHO, J.; KRAUSE, L. C.; SOARES, C. M. F.; NAMPOOTHIRI, K. M.; SUKUMARAN, R. K.; FERREIRA-DIAS, S. Production of low-calorie structured lipids from spent coffee grounds or olive pomace crude oils catalyzed by immobilized lipase in magnetic nanoparticles. Bioresource Technology, vol. 307, p. 123223, 2020. DOI https://doi.org/10.1016/j.biortech.2020.123223. Available at: http://www.sciencedirect.com/science/article/pii/S0960852420304946.

NARA, S. J.; HARJANI, J. R.; SALUNKHE, M. . Lipase-catalyzed transesterification in ionic liquids and organic solvents: a comparative study. Tetrahedron Letters, vol. 43, p. 2979–2982, 2002. https://doi.org/10.1016/S0040-4039(02)00420-3.

NAVARRO LÓPEZ, E.; ROBLES MEDINA, A.; GONZÁLEZ MORENO, P. A.; ESTEBAN CERDÁN, L.; MARTÍN VALVERDE, L.; MOLINA GRIMA, E. Biodiesel production from Nannochloropsis gaditana lipids through transesterification catalyzed by Rhizopus oryzae lipase. Bioresource Technology, vol. 203, p. 236–244, 2016. https://doi.org/10.1016/j.biortech.2015.12.036.

NIGAM, S.; MEHROTRA, S.; VANI, B.; MEHROTRA, R. Lipase Immobilization Techniques for Biodiesel Production: An Overview. International Journal of Renewable Energy and Biofuels, vol. 2014, p. 1–16, 2014. DOI 10.5171/2014.664708. Available at: http://www.ibimapublishing.com/journals/IJREB/2014/664708/664708.html.

NIKPOUR, M.; PAZOUKI, M. Lipase Immobilized into Novel GPTMS: TMOS Derived Sol-Gels and Its Application for Biodiesel Production from Waste Oil. Iranian Journal of Chemical Engineering(IJChE), Department of Energy, Materials and Energy Research Center, Meshkin Dasht, Karaj, Iran, vol. 13, no. 1, p. 32–46, 2016. Available at: http://www.ijche.com/article_15375.html.

QIN, J.; ZOU, X.; LV, S.; JIN, Q.; WANG, X. Influence of ionic liquids on lipase activity and stability in alcoholysis reactions. RSC Adv., vol. 6, no. 90, p. 87703–87709, 2016. DOI 10.1039/C6RA19181A. Available at: http://xlink.rsc.org/?DOI=C6RA19181A.

SÁNCHEZ, D. A.; TONETTO, G. M.; FERREIRA, M. L. Burkholderia cepacia lipase: A versatile catalyst in synthesis reactions. Biotechnology and Bioengineering, vol. 115, no. 1, p. 6–24, 2018. https://doi.org/10.1002/bit.26458.

SANTANA, J. L.; OLIVEIRA, J. M.; NASCIMENTO, J. S.; MATTEDI, S.; KRAUSE, L. C.; FREITAS, L. S.; CAVALCANTI, E. B.; PEREIRA, M. M.; LIMA, Á. S.; SOARES, C. M. F. Continuous flow reactor based with an immobilized biocatalyst for the continuous enzymatic transesterification of crude coconut oil. Biotechnology and Applied Biochemistry, vol. n/a, no. n/a, 12 Jan. 2020. DOI 10.1002/bab.1885. Available at: https://doi.org/10.1002/bab.1885.

SU, F.; PENG, C.; LI, G. L.; XU, L.; YAN, Y. J. Biodiesel production from woody oil catalyzed by Candida rugosa lipase in ionic liquid. Renewable Energy, vol. 90, p. 329–335, 2016. https://doi.org/10.1016/j.renene.2016.01.029.

TAHER, H.; AL-ZUHAIR, S. Emerging Green Technologies for Biodiesel Production. 1st ed., Frontiers in Bioenergy and Biofuels, 2017.

YÜCEL, Y. The Enzymatic Production of Biodiesel from Pomace Oil Using Immobilized Thermomyces lanuginosus. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 35, no. 4, p. 370–375, 2013. https://doi.org/10.1080/15567036.2010.503228.




DOI: https://doi.org/10.34117/bjdv6n7-444

Refbacks

  • There are currently no refbacks.