A multi-product mathematical model for iron ore stockyard planning problem / Um modelo matemático multiprodutos para o problema de planejamento de meios de ferro

Marcos Wagner Jesus Servare Junior, Helder Roberto de Oliveira Rocha, José Leandro Félix Salles

Abstract


Stockyards in port areas are essential in supply chain management, due to the aggregation of logistical costs. Its objective is to carry out the ships' loading according to their capacity and specification of the iron ore characteristic. For solid bulks, product stockpiles are allocated along with the stockyards, together with the receiving and handling system, in addition to blending and recovering stockpiles for supplying ships. In the optimization of this system, some factors point to a variety of flows and products (types of iron ore) demanded, increasing the system's complexity. This paper aims to present a multi-product mathematical model from mixed-integer linear programming for allocating stockpiles with different mining resources, facilities, and equipment.  Numerical results show a comparison of the computational efficiency of simulated instances with different numbers of equipment, minas, and ships using the commercial solution CPLEX.

 

 


Keywords


Iron Ore Stockyard Planning Problem, Mathematical Modeling, Stockyards Programming. Paper topics (Operations Research in Industry, Mathematical Programming, Operations Research in the Business and Production Management)

Full Text:

PDF

References


Abdekhodaee, A. et al. (2004). Integration of stockyard and rail network: a scheduling case study. In: Anais do fifth Asia Pacific industrial engineering and management systems conference, p. 25.5.1-25.5.17, Gold Coast, APIEMS.

Almeida, F. A. e Pimentel, B. S. (2010). Um modelo matemático para o problema de programação integrada de curto prazo em minas. In Anais do XLII SBPO, p. 1129-1140, Bento Gonçalves, SOBRAPRO.

Amorim Júnior, W. P. (2006). Sistema de alocação em pátios de estocagem: uma aplicação no armazenamento de bobinas de aço (dissertação). Vitória (ES-Brasil): Universidade Federal do Espírito Santo.

Bittencourt, S.V. e Matede, W.C. (2009). Uma abordagem acerca dos problemas de otimização referentes ao sistema de alocação em pátios de estocagem e às movimentações de bobinas de aço laminadas. In Anais do Simpósio Projeto e Análise de Algoritmos, Vitória, UFES.

Boland, N. et al. (2012). A stockyard planning problem. EURO Journal on Transportation and Logistics, 1(3): 197-236.

Floudas, C. A.; Lin, X. (2004). Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review. Computers & Chemical Engineering, 28(11): 2109-2129.

IBM (2012). IBM ILOG CPLEX v12.5: User’s manual for CPLEX.

Ignizio, J. P. (1978) A review of Goal Programming: a tool for multiobjective analysis. Journal of the Operational Research Society, 29(11): 1109–1119.

Li, Z.; Ierapetritou, M. G. (2008a). Process scheduling under uncertainty: Review and challenges. Computers & Chemical Engineering, 32(4-5): 715-727.

Li, Z.; Ierapetritou, M. G. (2008b). Robust optimization for process scheduling under uncertainty. Industrial & Engineering Chemistry Research, 47(12): 4148-4157.

Maravelias, C. T. (2012). General framework and modeling approach classification for chemical production scheduling. AIChE Journal, 58(6): 1812-1828.

Méndez, C. A. et al. (2006) State-of-the-art review of optimization methods for short-term scheduling of batch processes. Computers & Chemical Engineering, 30(6-7): 913-946.

Menezes, G. C. et al. (2017). A branch and price algorithm to solve the integrated production planning and scheduling in bulk ports. European Journal of Operational Research, 258(3): 926-937.

Nóbrega, M. A (1996). Modelagem matemática de um sistema de produção e transporte de minério de ferro (dissertação). Campinas (SP-Brasil): Universidade estadual de Campinas.

Lopes, A. D. O. et al. (2018). Ferramentas de Auxílio ao Planejamento de Curto Prazo para Industrias de Mineração 4.0. In: Anais do 13th IEEE/IAS International Conference on Industry Applications, São Paulo. IEEE/IAS.

Phanden, R. K. et al. (2011). Integration of process planning and scheduling: a state-of-the-art review. International Journal of Computer Integrated Manufacturing, 24(6): 517-534.

Pimentel, B. S. (2011) Modelos e Algoritmos para Planejamento Integrado da Indústria da Mineração (Tese de Doutorado). Belo Horizonte (MG-Brasil): Universidade Federal de Minas Gerais.

Ribas, I., R. et al. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37(8): 1439-1454.

Sakamoto, A. R., Rodrigues, R. M. M., & Alves, K. C. S. (2020). O novo regulamento do código de mineração brasileiro: Impactos na captação de investimentos para a indústria do ferro. Brazilian Journal of Development, 6(3), 14473-14486.

Servare Junior, M. W. J. et al. (2018). Modelo matemático para otimização na alocação pilhas em um pátio de estocagem de portos e carregamento de navios. In Anais do VIII Congresso Brasileiro de Engenharia de Produção, Ponta Grossa. APREPRO.

Voudoris, C. (1997). Guided local search for combinatorial optimisation problems (Tese PhD). Colchester (UK): Department of Computer Science, University of Essex.




DOI: https://doi.org/10.34117/bjdv6n7-215

Refbacks

  • There are currently no refbacks.