Uma abordagem híbrida de processamento de imagens para o monitoramento de mudanças na cobertura do solo em ambiente urbano costeiro / A hybrid image processing approach for monitoring changes in coastal urban land cover classes

Carla Jaqueline Casaroti, Jorge Antonio Silva Centeno

Abstract


As mudanças na paisagem podem ocorrer a partir de ações antrópicas ou naturais, imagens adquiridas a partir de plataformas orbitais, ou a partir de câmaras embarcadas em aviões, como também por Drones e VANT’s (Veículos Aéreos Não Tripulados) mais atualmente, vêm sendo amplamente utilizadas a fim de que essas alterações possam ser compreendidas e representadas espacialmente na tomada de decisões, em relação a determinado fenômeno em estudo. Este artigo trata de desenvolver uma metodologia híbrida na detecção de alterações, ou seja, utilizando as abordagens: orientada a objeto na classificação de duas imagens com cobertura do solo urbana, e a abordagem orientada a pixel na comparação das alterações, no sentido de melhoria no processamento.

Keywords


OBIA, Detecção de alterações, Classificação.

References


AL-KHUDHAIRY, D. H. A.; CARAVAGGI, I.; GIADA, S. Structural Damage Assessments from Ikonos Data Using Change Detection, Object-Oriented Segmentation, and Classification Techniques. American Society for Photogrammetry and Remote Sensing, v. 13, n. 7, p. 825-837, 2005.

AMPOU, E. E.; OUILLON, S.; IOVAN, C. & ANDRÉFOUËT, S. Change Detection of Bunaken Island Coral Reefs Using 15 Years of Very High-Resolution Satellite Images: A kaleidoscope of habitat trajectories. Marine Pollution Bulletin, v. 131, p. 83-95, 2018.

BLASCHKE, T. & LANG, S. Object-oriented Image Analysis for Automated Information Extraction – A Synthesis. In: MEASURING THE EARTH II ASPRS FALL CONFERENCE, November 2006, p. 6-10.

BAATZ, M. & SCHÄPE, A. Multiresolution Segmentation: an optimization approach for high quality multiscale image segmentation. 2000. Disponível em; http://www.ecognition.com/sites/default/files/405_baatz_fp_12.pdf. Acessado em fevereiro de 2014

CARVALHO, L. M. T.; FONSECA, L. M. G.; MURTAGH, F.; CLEVERS, J. G. P. W. Digital Change Detection with the Aid of Multiresolution Wavelet Analysis. International Journal of Remote Sensing, v. 22. p. 3871-3876, 2001.

CHEN, G.; HAY, G. J.; CARVALHO, L. M. T.; WULDER, M. A. Object-based Change Detection. International Journal of Remote Sensing, v. 33, n. 14, p. 4434-4457, 2012.

Definiens User Guide Disponível em; https://workspace.imperial.ac.uk/imagingfacility/public/DefiniensUserGuide.pdf. Acessado em fevereiro de 2017

DESCLÉE, B.; BOGAERT, P.; DEFOURNY, P. Forest Change Detection by Statistical Object-based Method. Remote Sensing of Environment, v. 102, p. 1-11, 2006.

DURIEUX, L.; LAGABRIELLE, E.; NELSON, A. A Method for Monitoring Building Construction in Urban Sprawl Areas Using Object-based Analysis of Spot 5 Images and Existing GIS Data. ISPRS Journal of Photogrammetry and remote Sensing, v. 63, p. 399-408, 2008.

EL-HATTAB M. M. Applying Post Classification Change Detection Technique to Monitor an Egyptian Coastal Zone (Abu Qir Bay). The Egyptian Journal of Remote Sensing and Space Science, v. 19(1), p. 23-36, 2016.

GHOFRANI, Z.; MOKHTARZADE, M.; SAHEBI, M. R.; BEYKIKHOSHK, A. Evaluating Coverage Changes in National Parks Using a Hybrid Change Detection Algorithm and Remote Sensing. Journal of Applied Remote Sensing, v. 083646-1, p. 1-17, 2014.

GONZALEZ, R. C. & WOODS, R. Processamento de Imagens Digitais. Editora Edgard Blucher, São Paulo, 2000.

HALL, O. & HAY, G. J. A Multiscale Object-specific Approach to Digital Change Detection. International Journal of Applied Earth Observation and Geoinformation, v. 4, n. 4, p. 311-327, 2003.

HUSSAIN, M.; CHEN, D.; CHENG, A.; WEI, H.; STANLEY, D. Change detection from remotely sensed Images: From pixel based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, v. 80, p. 91–106, 2013.

LV, Z.; LIU, T.; WAN, Y.; BENEDIKTSSON, J. A.; ZHANG, X. Post-Processing Approach for Refining Raw Land Cover Change Detection of Very High-Resolution Remote Sensing Images. Remote Sensing, v. 10(3), p. 472-490, 2018.

LU, D.; MAUSEL, P.; BRODÍZIO, E.; MORAN, E. Change Detection Techniques. International Journal of Remote Sensing, v. 25, p. 2365-2407, 2004.

MORISETTE, J. T. Using Generalized Linear Models to Enhance Satellite Based Land Cover Change Detection. (Doutorado). Faculty of North Carolina State University. 1997.

NAVULUR, K. Multispectral Image Analysis Using the Object-oriented Paradigm. CRC Press - Taylor & Francis Group, 2008.

SAFAVIAN, S. R. & LANDGREBE, D. A Survey of Decision Tree Methodology. IEEE Trans. Systems, Man and Cybernetics, v. 21, n. 3, pp. 660-674, May-June 1991.

SCHOWENGERDT, R. A. Techniques for image processing and classification in remote sensing. Academic Press. Inc., Florida. 1983.

WALTER, V., 2004.Object-based classification of remote sensing data for change detection. ISPRS Journal of Photogrammetry and Remote Sensing, v. 58, p. 225–238, January, 2004.




DOI: https://doi.org/10.34117/bjdv6n7-149

Refbacks

  • There are currently no refbacks.