Thermal comfort assessment in a naturally ventilated university dormitory in tropical climate zone/ Avaliação do conforto térmico em uma moradia universitária naturalmente ventilada em clima tropical

Authors

  • Adriana Rodrigues Pereira Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Simone Queiroz da Silveira Hirashima
  • Raquel Diniz Oliveira

DOI:

https://doi.org/10.34117/bjdv6n7-145

Keywords:

Thermal comfort, Natural ventilation, Adaptive model, Static model.

Abstract

This research investigated the occupants’ thermal comfort in a naturally ventilated university dormitory. A field study was conducted in tropical climate zone in Brazil. To carry out the thermal comfort evaluation the bedroom that presents the worst thermal behavior was analyzed. Climatic variables, such as air temperature, air speed and relative humidity, were measured while occupants answered online questionnaires about subjective thermal perception. The method used involves: a) climatic field measurements simultaneously with application of questionnaires to users; b) data analysis in which thermal comfort was evaluated by the indices PMV and operative temperature; c) comparing the indices results and the perceptions of occupants. Linear regression analysis showed that the neutral operative temperature was 23.79 °C.  For the adaptive model, the neutral temperature obtained was 25.22 °C. The lower and upper limits, for 80% acceptability, were determined as 21.72 °C and 28.72 °C, respectively. The data obtained for adaptive thermal comfort approach showed a correspondence with the users’ thermal sensation. There was no adherence between the occupants’ responses and the PMV approach, demonstrating the low prediction accuracy of the PMV–PPD model in a tropical climate zone. Occupants noticed their surrounding thermal environment warmer than the PMV predicted.

References

N.E. KLEPEIS, W.C. NELSON, W.R. OTT, J.P. ROBINSON, A.M. TSANG, P. SWITZER, J. V BEHAR, S.C. HERN, W.H. ENGELMANN, The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants, J. Expo. Sci. Environ. Epidemiol. 11 (2001) 231–252. doi:10.1038/sj.jea.7500165.

ANSI/ASHARE Standard 55, Thermal Environmental Conditions for Human Occupancy, ASHRAE, Atlanta, GA, 2017.

L.V. De Abreu-harbich, V.L.A. Chaves, M.C.G.O. Brandstetter, Evaluation of strategies that improve the thermal comfort and energy saving of a classroom of an institutional building in a tropical climate, Build. Environ. 135 (2018) 257–268. doi:10.1016/j.buildenv.2018.03.017.

E.W. Shaw, Thermal Comfort: analysis and applications in environmental engineering, by P. O. Fanger. 244 pp. DANISH TECHNICAL PRESS. Copenhagen, Denmark, 1970. Danish Kr. 76, 50, R. Soc. Health J. 92 (1972) 164. doi:10.1177/146642407209200337.

J.F. Nicol, M.A. Humphreys, Adaptive thermal comfort and sustainable thermal standards for buildings, Energy Build. 34 (2002) 563–572. doi:10.1016/S0378-7788(02)00006-3.

ISO, ISO 7730:2005, INTERNATIONAL STANDARD ISO environment — Analytical determination, Iso. 2005 (2005).

A. García, F. Olivieri, E. Larrumbide, P. Ávila, Thermal comfort assessment in naturally ventilated offices located in a cold tropical climate , Bogotá, Build. Environ. 158 (2019) 237–247. doi:10.1016/j.buildenv.2019.05.013.

Z. Sadat, M. Tahsildoost, M. Hafezi, Thermal comfort in educational buildings?: A review article, Renew. Sustain. Energy Rev. 59 (2016) 895–906. doi:10.1016/j.rser.2016.01.033.

T. Cheung, S. Schiavon, T. Parkinson, P. Li, G. Brager, Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II, Build. Environ. 153 (2019) 205–217. doi:10.1016/j.buildenv.2019.01.055.

R. De Dear, G. Brager, D. Cooper, Developing an adaptive model of thermal comfort and preference, ASHRAE Trans. 104 (1997) 1–18. https://escholarship.org/uc/item/4qq2p9c6.pdf%5Cnhttp://escholarship.org/uc/item/4qq2p9c6.pdf%5Cnhttp://repositories.cdlib.org/cedr/cbe/ieq/deDear1998_ThermComPref.

R. Amin, D. Teli, P. James, L. Bourikas, The influence of a student’s “home” climate on room temperature and indoor environmental controls use in a modern halls of residence, Energy Build. 119 (2016) 331–339. doi:10.1016/j.enbuild.2016.03.028.

Z. Wu, N. Li, P. Wargocki, J. Peng, J. Li, Energy & Buildings Adaptive thermal comfort in naturally ventilated dormitory buildings in Changsha , China, 186 (2019) 56–70. doi:10.1016/j.enbuild.2019.01.029.

ABNT – Associação Brasileira de Normas Técnicas, NBR 15575 – Desempenho de edifícios habitacionais até cinco pavimentos, ABNT, Rio de Janeiro, 2013.

ABNT – Associação Brasileira de Normas Técnicas, ABNT NBR 15220 - Desempenho térmico de edificações, ABNT, Rio de Janeiro, 2005.

ISO, ISO 10551 - Ergonomics of the thermal environment: Assessment of the influence of the thermal environment using subjective judgement scales Ergonomie, Geneva, 1995.

C. Alcarde Alvares, J. Stape, P. Sentelhas, J. Gonçalves, G. Sparovek, Köppen’s climate classification map for Brazil, 2013. doi:10.1127/0941-2948/2013/0507.

DPFP – Departamento de Planejamento Físico e Projetos, Projeto Executivo: Implantação, (2014).

DPFP, Projeto Executivo: Bloco I – Unidade habitacional: planta geral e paginação de piso, (2014).

eSurv, eSurv - Free Survey Maker, https://esurv.org/ (accessed October 7, 2019).

E.J. R., The value of online surveys, Internet Res. 15 (2005) 195–219. doi:10.1108/10662240510590360.

E. Kuchen, M.N. Fisch, G.E. Gonzalo, G.N. Nozica, Predição do índice de conforto térmico em edificíos de escritório na Alemanha, Ambient. Construído. 11 (2011) 39–53. doi:10.1590/S1678-86212011000300004.

BRAZIL, Brazilian climatological normals 1981-2010, Inst. Nac. Meteorol. - INMET. (2018). http://www.inmet.gov.br/portal/normais_climatologicas/mobile/index.html#p=4 (accessed July 10, 2019).

I. ISO, ISO 7726 - Ergonomics of the thermal environment, instruments for measuring physical quantities, Geneva, 1998.

S.Q. da S. Hirashima, Calibração do índice de conforto térmico temperatura fisiológica equivalente (PET) para espaços abertos do Município de Belo Horizonte, MG, (2010) 225.

M.J. Barbosa, G.C.B. Weiller, R. Lamberts, Disposição dos equipamentos para medição da temperatura do ar em edificações, Ambient. Construído. (2007) 89–108.

M.J. Barbosa, R. Lamberts, S. Guths, Uso de barreiras de radiação para minimizar o erro no registro das temperaturas do ar em edificações, Ambient. Construído. (2008) 117–136.

M.A. FARIA, Avaliação das condições de conforto térmico nas salas de aula do campus Morro do Cruzeiro da UFOP, Universidade Federal de Ouro Preto, 2013.

L.M. Monteiro, Modelos preditivos de conforto térmico: quantificação de relações entre variáveis microclimáticas e de sensação térmica para avaliação e projeto de espaços abertos, (2008). doi:10.11606/T.16.2008.tde-25032010-142206.

BRAZIL, Plataforma Brasil. Ministério da Saúde - Comissão Nacional de Ética em Pesquisa. http://plataformabrasil.saude.gov.br (accessed October 18, 2018).

T.R. Renckly, Air University Sampling and Surveying Handbook: Guidelines for Planning, Organizing, and Conducting Surveys, Alabama, 1996.

P.O. Fanger, Thermal comfort?: analysis and applications in environmental engineering, R.E. Krieger Pub. Co, Copenhagen, 1970.

H. Tyler, S. Stefano, P. Alberto, C. Toby, M. Dustin, S. Kyle, CBE Thermal Comfort Tool, Cent. Built Environ. Univ. Calif. Berkeley. (2017). http://www.cbe.berkeley.edu/ (accessed November 15, 2018).

R.J. de Dear, G.S. Brager, Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55, Energy Build. 34 (2002) 549–561. doi:10.1016/S0378-7788(02)00005-1.

BRAZIL, Estação Meteorológica de Observação de Superfície Automática, Inst. Nac. Meteorol. - INMET. http://www.inmet.gov.br/portal/index.php?r=estacoes/estacoesAutomaticas.

S. Thapa, A. Kr, G. Kr, Thermal comfort in naturally ventilated office buildings in cold and cloudy climate of Darjeeling , India – An adaptive approach, Energy Build. 160 (2018) 44–60. doi:10.1016/j.enbuild.2017.12.026.

R. Kc, H.B. Rijal, M. Shukuya, K. Yoshida, An in-situ study on occupants ’ behaviors for adaptive thermal comfort in a Japanese HEMS condominium, 19 (2018) 402–411. doi:10.1016/j.jobe.2018.05.013.

A.K. Mishra, M. Ramgopal, Thermal comfort in undergraduate laboratories d A fi eld study in, Build. Environ. 71 (2014) 223–232. doi:10.1016/j.buildenv.2013.10.006.

W. de B. GONÇALVES, R.M. VALLE, E.S. GARCIA, Estudo de índices de conforto térmico para aplicação em Belo Horizonte - MG, com base em pesquisa de população universitária, ENCAC 2001 - VI Encontro Nac. Conforto No Ambient. Construído e III Encontro Latino-Americano Conforto No Ambient. Construído. (2001) 1–8.

M.K. Nematchoua, R. Tchinda, P. Ricciardi, N. Djongyang, A field study on thermal comfort in naturally ventilated buildings located in the equatorial climatic region of Cameroon, Renew. Sustain. Energy Rev. 39 (2014) 381–393. doi:10.1016/j.rser.2014.07.010.

S. Siu, Y. Lau, J. Zhang, Y. Tao, A comparative study of thermal comfort in learning spaces using three different ventilation strategies on a tropical university campus, Build. Environ. 148 (2019) 579–599. doi:10.1016/j.buildenv.2018.11.032.

A. Jindal, Thermal comfort study in naturally ventilated school classrooms in composite climate of India, Build. Environ. 142 (2018) 34–46. doi:10.1016/j.buildenv.2018.05.051.

A. Ioannou, L. Itard, In-situ and real time measurements of thermal comfort and its determinants in thirty residential dwellings in the Netherlands, Energy Build. 139 (2020) 487–505. doi:10.1016/j.enbuild.2017.01.050.

M.A. Humphreys, J.F. Nicol, The validity of ISO PMV for predicting comfort votes in everyday thermal environments, Energy Build. 34 (2002) 667–684. doi:10.1016/S0378-7788(02)00018-X.

Y. He, N. Li, J. Peng, W. Zhang, Y. Li, Field study on adaptive comfort in air conditioned dormitories of university with hot-humid climate in summer, Energy Build. 119 (2016) 1–12. doi:10.1016/j.enbuild.2016.03.020.

S. Aghniaey, T.M. Lawrence, T.N. Sharpton, S.P. Douglass, T. Oliver, M. Sutter, Thermal comfort evaluation in campus classrooms during room temperature adjustment corresponding to demand response, Build. Environ. 148 (2019) 488–497. doi:10.1016/j.buildenv.2018.11.013.

T.H. Karyono, Bandung Thermal Comfort Study: Assessing the Applicability of an Adaptive Model in Indonesia, Archit. Sci. Rev. 51 (2008) 60–65. doi:10.3763/asre.2008.5108.

Downloads

Published

2020-07-08

How to Cite

Pereira, A. R., Hirashima, S. Q. da S., & Oliveira, R. D. (2020). Thermal comfort assessment in a naturally ventilated university dormitory in tropical climate zone/ Avaliação do conforto térmico em uma moradia universitária naturalmente ventilada em clima tropical. Brazilian Journal of Development, 6(7), 44119–44144. https://doi.org/10.34117/bjdv6n7-145

Issue

Section

Original Papers