Atividade antimicrobiana da peçonha de Lachesis muta rhombeata / Antibacterial activity of Lachesis muta rhombeata venom

Yonne Karoline Tenório de Menezes, Sílvio Francisco da Silva, Patricia Luana Barbosa da Silva Ribeiro, Luís André de Almeida Campos, Sayonara Stéfane Tavares de Moura, Sarah Brandão Palácio, Jeanne Claine de Albuquerque Modesto, Isabella Macário Ferro Cavalcanti

Abstract


O aumento dos casos de morte causada por infecções bacterianas tem impulsionado pesquisadores a investigarem diferentes fontes biológicas, como venenos animais, que contêm moléculas bioativas, e esses podem ser fontes de novos moléculas terapêuticas para o tratamento de infecções microbianas. Assim, o objetivo deste estudo foi avaliar a atividade antibacteriana do veneno de Lachesis muta rhombeata. Para a avaliação da atividade antibacteriana do veneno, foram utilizados os métodos de difusão em disco e microdiluição de acordo com o Clinical and Laboratory Standards Institute. Os resultados obtidos no método de difusão em disco demonstraram que o veneno de Lachesis muta rhombeata não apresentou atividade antibacteriana frente as bactérias gram-negativas Klebsiella pneumoniae ATCC 700603 (halo de inibição = 5,7 ± 0,3 mm) e Escherichia coli ATCC 25922 (halo de inibição = 6,2 ± 1,2 mm), porém, o veneno apresentou atividade moderada frente a Pseudomonas aeruginosa ATCC 27853 (halo de inibição = 11,4 ± 0,5 mm). Em relação as bactérias gram-positivas, o veneno de Lachesis muta rhombeata apresentou atividade antibacteriana frente a Staphylococcus aureus ATCC 29213 (halo de inibição = 15,4 ± 1,1 mm), no entanto, o veneno não apresentou atividade frente a S. aureus resistente à meticilina (MRSA) ATCC 33591 (halo de inibição = 0 mm). No método de microdiluição, o veneno de Lachesis muta rhombeata apresentou maior atividade frente a S. aureus ATCC 29213 (Concentração Inibitória Mínima (CIM) = 64 μg/mL), atividade moderada frente a P. aeruginosa ATCC 27853 (CIM = 256 μg/mL), fracamente ativa frente a E. coli ATCC 25922 (CIM = 512 μg/mL) e inativo para K. pneumoniae ATCC 700603 e MRSA ATCC 33591 (CIM ≥ 512 μg/mL). Considerando os resultados obtidos neste estudo, o veneno de Lachesis muta rhombeata é uma alternativa promissora como agente antibacteriano, especialmente frente a Staphylococcus aureus.


Keywords


Infecção, bactéria, peçonha de cobra, Viperidae, atividade antimicrobiana.

References


ALAPE-GIRÓN, A. et al. Snake venomics of the lancehead pitviper bothrops asper. Geographic, individual, and ontogenetic variations. Journal of Proteome Research, v. 7, n. 8, p. 3556–3571, ago. 2008.

AYRES, M. C. C. et al. Atividade antibacteriana de plantas úteis e constituintes químicos da raiz de Copernicia prunifera. Brazilian Journal of Pharmacognosy, v. 18, n. 1, p. 90–97, jan. 2008.

CAMPBELL, J. A.; LAMAR, W. W. The Venomous Reptiles of the Western Hemisphere. [s.l.] Cornell. University Press, 2004. v. 2

CASEWELL, N. R. et al. Complex cocktails: The evolutionary novelty of venomsTrends in Ecology and EvolutionTrends Ecol Evol, , abr. 2013. .

CLSI. M100 Performance Standards for Antimicrobial Susceptibility Testing An informational supplement for global application developed through the Clinical and Laboratory Standards Institute consensus process. [s.l: s.n.]. Disponível em: . Acesso em: 16 mar. 2020.

DALTRY, J. C.; WÜSTER, W.; THORPE, R. S. Diet and snake venom evolution. Nature, v. 379, n. 6565, p. 537–542, 8 fev. 1996.

DAVIES, J.; DAVIES, D. Origins and evolution of antibiotic resistance.Microbiol Mol Biol Rev.American Society for Microbiology (ASM), , 2010. .

DE LIMA, D. C. et al. Snake venom: Any clue for antibiotics and CAM? Evidence-based Complementary and Alternative Medicine, v. 2, n. 1, p. 39–47, 2005.

DE LIMA, M. E. et al. Toxinology in Brazil: A big challenge for a rich biodiversity. Toxicon, v. 56, n. 7, p. 1084–1091, 15 dez. 2010.

DE OLIVEIRA JUNIOR, N. G.; E SILVA CARDOSO, M. H.; FRANCO, O. L. Snake venoms: Attractive antimicrobial proteinaceous compounds for therapeutic purposesCellular and Molecular Life SciencesCell Mol Life Sci, , dez. 2013. .

DOWELL, N. L. et al. Extremely Divergent Haplotypes in Two Toxin Gene Complexes Encode Alternative Venom Types within Rattlesnake Species. Current Biology, v. 28, n. 7, p. 1016- 1026.e4, 2 abr. 2018.

DUEÑAS-CUELLAR, R. A. et al. Cm38: A New Antimicrobial Peptide Active Against Klebsiella pneumoniae is Homologous to Cn11. Protein & Peptide Letters, v. 22, n. 2, p. 164–172, 30 jan. 2015.

FERREIRA, B. L. et al. Comparative analysis of Viperidae venoms antibacterial profile: A short communication for proteomics. Evidence-based Complementary and Alternative Medicine, v. 2011, 2011.

FERREIRA, S. H. Do fator de potenciação da bradicinina (BPF) aos inibidores da ECA. Rev. bras. hipertens, v. 5, n. 1, p. 6–8, 1998.

FULY, A. L. et al. Myotoxic activity of an acidic phospholipase A2 isolated from Lachesis muta (Bushmaster) snake venom. Toxicon, v. 38, n. 7, p. 961–972, jul. 2000.

HOLETZ, F. B. et al. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Memorias do Instituto Oswaldo Cruz, v. 97, n. 7, p. 1027–1031, 2002.

JACKSON, N.; CZAPLEWSKI, L.; PIDDOCK, L. J. V. Discovery and development of new antibacterial drugs: Learning from experience? Journal of Antimicrobial Chemotherapy, v. 73, n. 6, p. 1452–1459, 2018.

LUSHNIAK, B. D. Antibiotic Resistance: A Public Health Crisis. Public Health Reports, v. 129, n. 4, p. 314–316, jul. 2014.

MADRIGAL, M. et al. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda. Journal of Proteomics, v. 77, p. 280–297, 2012.

O’ NEILL, J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations The Review on Antimicrobial Resistance Chaired. The Review on antimicrobial resistance, v. 20, n. 1, p. 1–16, 2014.

OGUIURA, N. et al. In vitro antibacterial and hemolytic activities of crotamine, a small basic myotoxin from rattlesnake Crotalus durissus. Journal of Antibiotics, v. 64, n. 4, p. 327–331, abr. 2011.

OKUBO, B. M. et al. Evaluation of an antimicrobial L-amino acid oxidase and peptide derivatives from bothropoides mattogrosensis pitviper venom. PLoS ONE, v. 7, n. 3, 16 mar. 2012.

PÁRAMO, L. et al. Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom: Synthetic Lys49 myotoxin II-(115-129)- peptide identifies its bactericidal region. European Journal of Biochemistry, v. 253, n. 2, p. 452–461, 15 abr. 1998.

PARK, C. B.; KIM, H. S.; KIM, S. C. Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochemical and Biophysical Research Communications, v. 244, n. 1, p. 253–257, 6 mar. 1998.

PIMENTEL, V. et al. Biodiversidade brasileira como fonte da inovação farmacêutica: uma nova esperança? Revista do BNDES, n. 43, p. 41–89, 2015.

PLA, D. et al. Snake venomics of Lachesis muta rhombeata and genus-wide antivenomics assessment of the paraspecific immunoreactivity of two antivenoms evidence the high compositional and immunological conservation across Lachesis. Journal of Proteomics, v. 89, p. 112–123, 26 ago. 2013.

QIAO, H.; SUN, T. J. ntibacterial activity of ethanol extract and fractions obtained from Taraxacum mongolicum flower. Research Journal of Pharmacognosy, v. 1, n. 4, p. 35–39, 2014.

SAIKIA, D. et al. Differential mode of attack on membrane phospholipids by an acidic phospholipase A2 (RVVA-PLA2-I) from Daboia russelli venom. Biochimica et Biophysica Acta - Biomembranes, v. 1818, n. 12, p. 3149–3157, 1 dez. 2012.

SALAMA, W. H. et al. L-Amino acid oxidase from Cerastes vipera snake venom: Isolation, characterization and biological effects on bacteria and tumor cell lines. Toxicon, v. 150, p. 270–279, 1 ago. 2018.

SAMY, R. P. et al. Viper metalloproteinase (Agkistrodon halys Pallas) with antimicrobial activity against multi-drug resistant human pathogens. Journal of Cellular Physiology, v. 216, n. 1, p. 54–68, jul. 2008.

SAMY, R. P. et al. Snake Venom Phospholipases A2: A Novel Tool Against Bacterial Diseases. Current Medicinal Chemistry, v. 19, n. 36, p. 6150–6162, 11 dez. 2012.

SAN, T. M. et al. Screening antimicrobial activity of venoms from snakes commonly found in Malaysia. Journal of Applied Sciences, v. 10, n. 19, p. 2328–2332, 2010.

SANTOS, M. C. et al. Serpentes de interesse médico da amazônia: biologia, venenos e tratamento de acidentes. [s.l: s.n.]

SANZ, L. et al. Snake venomics of the South and Central American Bushmasters. Comparison of the toxin composition of Lachesis muta gathered from proteomic versus transcriptomic analysis. Journal of Proteomics, v. 71, n. 1, p. 46–60, 30 abr. 2008.

SUDHARSHAN, S.; DHANANJAYA, B. L. Antibacterial potential of a basic phospholipase A2 (VRV-PL-VIIIa) from Daboia russelii pulchella (Russell’s viper) venom. Journal of Venomous Animals and Toxins Including Tropical Diseases, v. 21, n. 1, p. 1–8, 2015.

UETZ, P.; FREED, P.; HOŠEK, J. The Reptile Database http://www.reptile-database.org, accessed [2020/03/28].

VENTOLA, C. L. The antibiotic resistance crisis: causes and threats. P & T journal, v. 40, n. 4, p. 277–283, 2015.

WAHEED, H.; MOIN, S. F.; CHOUDHARY, M. I. Snake Venom: From Deadly Toxins to Life-saving Therapeutics. Current Medicinal Chemistry, v. 24, n. 17, 4 jul. 2017.

WANG, F. et al. The serum of rabbitfish (Siganus oramin) has antimicrobial activity to some pathogenic organisms and a novel serum l-amino acid oxidase is isolated. Fish and Shellfish Immunology, v. 30, n. 4–5, p. 1095–1108, 2011.

WEI, J. F. et al. Purification, characterization and cytokine release function of a novel Arg-49 phospholipase A2 from the venom of Protobothrops mucrosquamatus. Biochimie, v. 88, n. 10, p. 1331–1342, 1 out. 2006.

WIEGAND, C. et al. Poly(ethyleneimines) in dermal applications: biocompatibility and antimicrobial effects. International journal of pharmaceutics, v. 456, n. 1, p. 165–174, 2013.

XU, C. et al. A bactericidal homodimeric phospholipases A2 from Bungarus fasciatus venom. Peptides, v. 28, n. 5, p. 969–973, maio 2007.

ZANCOLLI, G. et al. When one phenotype is not enough: Divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species. Proceedings of the Royal Society B: Biological Sciences, v. 286, n. 1898, 13 mar. 2019.




DOI: https://doi.org/10.34117/bjdv6n7-125

Refbacks

  • There are currently no refbacks.