Evaluation of mass loss of pineapple bagasse pretreated with alkaline hydrogen peroxide / Avaliação da perda de massa de bagaço de abacaxi pré-tratado com peróxido de hidrogênio alcalino

Fernanda Ferreira Freitas, Araceli Aparecida Seolatto, Margareth Martins Pereira Ferreira, Danielle Pires Nogueira, Lorena Costa Vasconcelos Macedo, Paula Rubia Ferreira Rosa

Abstract


In this work, the mass loss caused by the pre-treatment, with alkaline hydrogen peroxide, of the dried and ground pineapple bagasse was studied. The bagasse was separated granulometrically. The fractions with an average diameter of 1.242 mm (20 mesh) and 0.564 mm (48 mesh) showed the highest volumes among the sieves used. For this reason, these two fractions were chosen to evaluate the influence of particle size on the mass loss during the pre-treatment. The dry pineapple bagasse was characterized for the contents of moisture, ash, soluble and insoluble lignin, cellulose and hemicellulose, and carbohydrates. Central composite rotatable designs were carried out for each particle size in order to assess the influence of pre-treatment time (h), temperature (°C) and concentration of alkaline hydrogen peroxide (%) on the mass losses caused in the samples. The mass losses observed in the pineapple bagasse fractions, after pretreatment, varied between 80.467 ± 0.722% and 89.495 ± 0.985% for the 20 mesh bagasse and 79.641 ± 0.856% and 88.576 ± 0.170% for the 48 mesh bagasse. Mass losses were very high, which may indicate that pretreatment with alkaline sodium hydroxide is too aggressive for pineapple bagasse.

 

 

 

 


Keywords


Ethanol 2G, Biofuel, Biomass.

Full Text:

PDF

References


Aruna, T. E. Production of value added product from pineapple peels using solid state fermentation. Inovative Food Science and Emerging Technologies, 57, 102193, 2019.

Aziz, M. G.; Michlmayr, H.; Kulbe, K. D.; Del Hierro, A. M. Biotransformation of pineapple juice sugars into dietetic derivatives by using a cell free oxidoreductase from Zymomonas mobilis together with commercial invertase. Enzyme and Microbial Technology, 48(1), 85-91, 2011.

Banerjee, S.; Ranganathan, V.; Patti, A.; Arora, A. Valorization of pineapple wastes for food and therapeutic applications. Trends in Food Science & Technology, 82, 60-70, 2018.

Belkacemi, K.; Turcoite, G.; Halleux, D.; Savoie J. Ethanol production from AFEX-treated forages and agricultural residues. Applied Biochemistry and Biotechnology, 70-72, 441-462, 1998.

Browning B. L. Methods of wood chemistry. New York/London/Sydney: Interscience Publishers, Volume II, 1967.

Candido, R. G.; Mori, N. R.; Gonçalves, A. R. Sugarcane straw as feedstock for 2G ethanol: Evaluation of pretreatments and enzymatic hydrolysis. Industrial Crops and Products. Industrial Crops and Products, 147, 111845, 2019.

Cao, W.; Sun, C.; Qiu, J.; Li, X.; Liu, R.; Zhang, L. Pretreatment of sweet sorghum bagasse by alkaline hydrogen peroxide for enhancing ethanol production. Korean Journal of Chemical Engineering, 33(3), 873-879, 2016.

Detroy, W. R.; Julian, St. G. Biomass conversion: fermentation chemicals and fuels. CRC Critical Reviews in Microbiology, 10(3), 203-228, 1983.

Gil, L. S.; Maupoey, P. F. An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. Journal of Cleaner Production, 172, 1224-1231, 2018.

Gomes, F. M. G.; Vasconcelos, M.A.; Egito, A. S. Carneiro, J. C. Biodegradation of sugarcane bagasse by ruminal microorganisms from sheep and goats. Biossci. J, Uberlândia, 31(1),204-214. n. 1, 2015.

Gutierrez, L. E.; Cezar, P. W.; Ferrari, E. S.; Guimarães, G. L. Carboidratos solúveis em frutos: I. romã, manga, banana, jabuticaba, limão, abacaxi, laranja e cabeludinha. Anais Escola Superior de Agricultura Luiz de Queiroz, Departamento de Química, 33, 167-172, 1976.

Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz, Volume 1 Métodos Químicos e Físicos para Análise de Alimentos, 2. Ed, 1976.

Krishna S. H.; Rao, K. C. S.; Babu, J. S.; Reddy, D. S. Studies on the production and application of cellulose from Trichoderma reesei QM-9414. Bioprocess Engineering, 22(5), 467-470, 2000.

Maneeintr, K.; Leewisuttikul, T.; Kerdsuk, S.; Charinpanitkul, T. Hydrothermal and enzymatic treatments of pineapple waste for energy production. Energy Procedia, 152, 1260-1265, 2018.

Odisi, J. E., Sacarificação Enzimática do bagaço da cana-de-açúcar pré-tratado com peróxido de hidrogênio adicionada da álcali ou cinzas. 115f. (Dissertação de Mestrado). Universidade Federal de Santa Catarina, Florianópolis, SC. 2013.

Oliveira, S. C. dos C. Otimização do pré-tratamento com peróxido de hidrogênio a alta concentração de sólidos para a hidrólise enzimática de bagaço de cana-de açúcar. 81f. (Dissertação de Mestrado). Departamento de Engenharia Química. Universidade Estadual de Campinas. São Paulo, SP. 2012.

Olivério, J. L.; Hilst, A. G. P. DHR - Dedini Hidrólise Rápida – Revolutionary process for producing alcohol from sugar cane bagasse. XXV International Society of Sugar Cane Technologists Congress, Guatemala, 2005.

Rezzadori, K.; Benedetti, S.; Amante, E. R. Proposals for the residues recovery: Orange waste as raw material for new produtcs. Food and bioproducts processing, 90, 606-614, 2012.

Schieber, A.; Stintzing, F. C.; Carle, R., By-products of plant food processing as a source of functional compounds. Recent developments. Trends in Food Science e Technology. Cambridge, 12, 401-413, 2001.

Shahbandeh, M. Global pineapple production by leading countries 2018. Statista, 2020. Available at: < https://www.statista.com/statistics/298517/global-pineapple-production-by-leading-countries/#:~:text=Global%20pineapple%20production%20by%20leading%20countries%202018&text=In%202018%2C%20Costa%20Rica%2C%20Philippines,to%2027.92%20million%20metric%20tons.>. Accessed on: June 04, 2020.

Silva, O. de O. Aproveitamento do bagaço de abacaxi (Ananas comosus L. Merril) para produção biotecnológica de xilitol. 142f. Tese (Doctor Scientiae). Departamento de Ciência e Tecnologia de Alimentos Universidade Federal de Viçosa, MG, 2011.

Woiciechowski, A. L.; Neto, C. J. D.; Vandenberghe, L. P. DE S.; Neto, D. P. DE C.; Sydney, A. C. N.; Letti, L. A. J.; Karp, S. G.; Torres, L. A. Z.; Soccol, C. R. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances. Bioresource Technology, 304, 122848, 2020.




DOI: https://doi.org/10.34117/bjdv6n6-573

Refbacks

  • There are currently no refbacks.