Abordagens farmacológicas para o tratamento da infecção ocasionada por SARS-CoV-2: Uma revisão integrativa / Pharmacological approaches for the treatment of infection caused by SARS-CoV-2: An integrative review

Jaqueline Barbosa de Souza, Paula Carolina de Alencar Farias, Fábio Henrique Portella Corrêa de Oliveira, Jéssica Priscila Avelino Silva de Albuquerque


A síndrome respiratória aguda grave ocasionada pelo coronavírus 2 (SARS-CoV-2) têm estimulado a comunidade científica a desenvolver pesquisas com o objetivo de encontrar candidatos a serem utilizados como agentes terapêuticos. Diversos medicamentos já utilizados como antivirais em outros contextos de epidemias estão sendo testados in vivo e in vitro a fim de reduzir a carga viral do SARS-CoV-2. Sendo assim, o objetivo deste trabalho é identificar os resultados de estudos conduzidos com esse intuito, e evidenciar suas possíveis aplicações na terapêutica. Embora muitos deles tenham apresentados resultados promissores, os efeitos adversos são significativos, refletindo assim a necessidade de estudos mais robustos que comprovem não só a eficácia do seu uso, mas, também a segurança da sua administração em pacientes infectados por SARS-CoV-2.




SARS-CoV-2, propriedades antivirais, abordagens terapêuticas.


ALIPIO, M. Vitamin D Supplementation Could Possibly Improve Clinical Outcomes of Patients Infected with Coronavirus-2019 (COVID-19). Available at SSRN 3571484, 2020.

ANDREANIA, J. et al. In vitro testing of hydroxychloroquine and azithromycin on SARS-CoV-2 shows 1 synergistic effect 2. lung, v. 21, n. 1, p. 22-39, 2020.

AZEEM, S. Evaluation of cytotoxicity and antiviral activity of ivermectin against Newcastle disease virus. Pakistan journal of pharmaceutical sciences, v. 28, n. 2, p. 597-602, 2015.

GEKONGE, B.; BARDIN, M. C.; MONTANER, L. J. Nitazoxanide inhibits HIV viral replication in monocyte-derived macrophages. AIDS research and human retroviruses, v. 31, n. 2, p. 237-241, 2015.

BOELAERT, J. R.; PIETTE, J.; SPERBER, K. The potential place of chloroquine in the treatment of HIV-1-infected patients. Journal of clinical virology, v. 20, n. 3, p. 137-140, 2001.

CALY, L. The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral research, 104787, 2020.

CAO, B. et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. New England Journal of Medicine, v. 382, n. 19, p. 1787-1799, 2020.

CHANDLER, R. E. Serious Neurological Adverse Events after Ivermectin—Do They Occur beyond the Indication of Onchocerciasis?. The American journal of tropical medicine and hygiene, v. 98, n. 2, p. 382-388, 2018.

CHACCOUR, C. et al. Ivermectin and Novel Coronavirus Disease (COVID-19): Keeping Rigor in Times of Urgency. The American Journal of Tropical Medicine and Hygiene, 2020.

CHHAIYA, S. B; MEHTA, D. S.; KATARIA, B. C. Ivermectin: pharmacology and therapeutic applications. International Journal of Basic & Clinical Pharmacology, v. 1, n. 3, p. 132, 2012.

CHOY, K. T. et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral research, v. 178, n. 104786, 2020.

COLSON, P.; ROLAIN, J. M.; RAOULT, D. Chloroquine for the 2019 novel coronavirus. nternational journal of antimicrobial agents, v. 55, n. 3, p. 105923, 2020.

CROCI, R. et al. Liposomal systems as nanocarriers for the antiviral agent ivermectin. International journal of biomaterials, v. 2016, n. 1, p. 1-15, 2016.

CVETKOVIC, R. S., GOA, K. L. Lopinavir/ritonavir. Drugs, v. 63, n. 8, p. 769-802, 2003;

DALERBA, P.; LEVIN, B.; THOMPSON, J. L. A Trial of Lopinavir–Ritonavir in Covid-19. The New England journal of medicine, v. 382, n. 21, 2020.

DEVAUX, C. A. et al. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?. International journal of antimicrobial agents, n. 105938, 2020.

GAO, J.; TIAN, Z.; YANG, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience trends, 2020.

GAUTRET, P. et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, p. 105949, 2020.

GEVERS, S. et al. Safety considerations of chloroquine and hydroxychloroquine in treatment of COVID-19. Clinical Microbiology and Infection, 2020.

GREIN, J. et al. Compassionate use of remdesivir for patients with severe Covid-19. New England Journal of Medicine, 2020.

GREINACHER, A., WARKENTIN, T. E., CHONG, B. H. Heparin-induced thrombocytopenia. Platelets v. 4, p. 741-767, 2019.

GRIMES, J. M.; GRIMES, K. V. p38 MAPK inhibition: A promising therapeutic approach for COVID-19. Journal of Molecular and Cellular Cardiology, v. 144, n. 1, p. 63-65 2020.

HOFFMANN, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, v. 181, n. 2, p. 271-280, 2020.

HUANG, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, v. 395, n. 10223, p. 497-506, 2020.

ILIE, P. C.; STEFANESCU, S.; SMITH, L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clinical and Experimental Research, v. 1, 2020.

JIN, Y. et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses, v. 12, n. 4, p. 372, 2020.

KHAN, M. Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in vero cells. Journal of medical virology, v. 82, n. 5, p. 817-824, 2010.

KORBA, B. E. et al. Nitazoxanide, tizoxanide and other thiazolides are potent inhibitors of hepatitis B virus and hepatitis C virus replication. Antiviral research, v. 77, n. 1, p. 56-63, 2008.

KWIEK, J. J.; HAYSTEAD, T. A.; RUDOLPH, J. Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines. Biochemistry, v. 43, n. 15, p. 4538-4547, 2004.

KUMAR, A. et al. Hydroxychloroquine inhibits Zika virus NS2B-NS3 protease. ACS Omega, v. 3, n. 12, p. 18132-18141, 2018.

LI, G.; CHEN, X.; XU, A. Profile of specific antibodies to the SARS-associated coronavirus. New England Journal of Medicine, v. 349, n. 5, p. 508-509, 2003.

LI, X. et al. Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis, v. 10, n. 2, p. 102-108, 2020.

LIU, J. et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell discovery, v. 6, n. 1, p. 1-4, 2020.

LU, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, v. 395, n. 10224, p. 565-574, 2020.

MADRID, P. B. et al. Evaluation of Ebola virus inhibitors for drug repurposing. ACS infectious diseases, v. 1, n. 7, p. 317-326, 2015.

MARIK, P. E.; KORY, P.; VARON, J. Does vitamin D status impact mortality from SARS-CoV-2 infection?. Medicine in Drug Discovery, 2020.

MCCLELLAN, K.; PERRY, C. M. Oseltamivir. Drugs, v. 61, n. 2, p. 263-283, 2001.

MEHTA, P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, v. 395, n. 10229, p. 1033-1034, 2020.

MEHRA, M. R. et al. Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. The Lancet, 2020.

MURALIDHARAN, N. et al. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 Protease against COVID-19. Journal of Biomolecular Structure and Dynamics, p. 1-6, 2020.

OLDFIELD, V.; DHILLON, S.; PLOSKER, G. L. Tocilizumab. Drugs, v. 69, n. 5, p. 609-632, 2009.

PARTRIDGE, L. J.; GREEN, L. R.; MONK, P. N. Unfractionated heparin potently inhibits the binding of SARS-CoV-2 spike protein to a human cell line. bioRxiv, 2020.

RAJOLI, R. K. et al. Dose prediction for repurposing nitazoxanide in SARS-CoV-2 treatment or chemoprophylaxis. medRxiv, 2020.

RETALLACK, H. et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proceedings of the National Academy of Sciences, v. 113, n. 50), p. 14408-14413, 2016.

ROCKX, B. et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science, n. eabb7314, p. 1-10, 2020.

ROTHAN, H. A.; BYRAREDDY, S. N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of autoimmunity, p. 102433, 2020.

SALEH, M. et al. The Effect of Chloroquine, Hydroxychloroquine and Azithromycin on the Corrected QT Interval in Patients with SARS-CoV-2 Infection. Circulation: Arrhythmia and Electrophysiology, 2020.

SANDERS, J. M.; MONOGUE, M. L.; JODLOWSKI, T. Z. Pharmacologic treatments for coronavirus disease 2019 (COVID-19) a review. JAMA, 2020.

SAVARINO, A. et al. Effects of chloroquine on viral infections: an old drug against today's diseases. The Lancet infectious diseases, v. 3, n. 11, p. 722-727, 2003.

SCHIFF, M. H. et al. Integrated safety in tocilizumab clinical trials. Arthritis research & therapy, v. 13, n. 5, R141, 2011.

SHEAHAN, T. et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications, v. 11, n. 1, p. 1-14, 2020.

SHU, C. et al. Exploring Potential Super Infection in SARS-CoV2 by Genome-Wide Analysis and Receptor–Ligand Docking. Preprints, n. 2020030310, 2020.

SOUZA, J. B. et al. Hydroxychloroquine as an alternative for the treatment of infection caused by SARS-CoV-2: What is known so far?. Brazilian Journal of Health Review, v. 3, n. 3, p. 4255-4273, 2020.

TAN, Q.; JIN, Y. Ostavimir is ineffective against COVID-19: in silico assessment, in vitro and retrospective study. medRxiv, 2020.

TANG, N. et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost, v. 18, n. 5, p. 1094-1099, 2020.

TSANG, A. C. et al. The diagnostic utility of multifocal electroretinography in detecting chloroquine and hydroxychloroquine retinal toxicity. American Journal of Ophthalmology, v. 206, p. 132-139, 2019.

THACHIL, J. The versatile heparin in COVID-19. J Thromb Haemost, v. 18, n. 5, p. 1020-1022, 2020.

UL, Q. M. T. et al. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 2020.

VAFAEI, S. et al. Spotlight of Remdesivir in Comparison with Ribavirin, Favipiravir, Oseltamivir and Umifenovir in Coronavirus Disease 2019 (COVID-19) Pandemic. The Lancet Infectious Diseases, Manuscript Draft, 2020.

VIVEKANANTHAN, S. C. et al. Preliminary report of anti-hepatitis C virus activity of chloroquine and hydroxychloroquine in huh-5-2 cell line. Indian Journal of Pharmaceutical Sciences, v. 68, n. 4, 2006.

WAGSTAFF, K. M. et al. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochemical Journal, v. 443, n. 3, p. 851-856, 2012.

WANG, H. et al. SARS coronavirus entry into host cells through a novel clathrin-and caveolae-independent endocytic pathway. Cell research, v. 18, n. 2, p. 290-301, 2008.

WANG, L. F. et al. Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. Journal of Interferon & Cytokine Research, v. 35, n. 3, p. 143-156, 2015.

WANG, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research, v. 30, n. 3, p. 269-271, 2020.

WANG, Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The Lancet, v. 395, n. 10236, p. 1569-1578, 2020.

WANG, Y. M. et al. Antiviral activities of niclosamide and nitazoxanide against chikungunya virus entry and transmission. Antiviral research, v. 135, n.1, p. 81-90, 2016.

WILLIAMSON, B. et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. BioRxiv, 2020.

WIT, E. et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proceedings of the National Academy of Sciences, v. 117, n. 12, p. 6771-6776, 2020.

WIT, E. et al. SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, v. 14, n. 8, p. 523, 2016.

WULAN, W. N. Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses. Frontiers in microbiology, v. 6, n. 1, p. 553-601, 2015.

XU, X. et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proceedings of the National Academy of Sciences, v. 117, n. 20, p. 10970-10975, 2020.

XU, Z. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine, v. 8, n. 4, p. 420-422, 2020.

YANG, X. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine, v. 8, n. 5, p. 475-481, 2020.

YAO, X. et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases, 2020.

YOUNG, E. The anti-inflammatory effects of heparin and related com-pounds. Thromb Res., v. 122, n. 6, p. 743-752, 2008.

ZHANG, H. et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive care medicine, p. 1-5, 2020.

ZHENG, Y. Y. et al. COVID-19 and the cardiovascular system. Nature Reviews Cardiology, v. 17, n. 5, p. 259-260, 2020.

ZHAO, H. et al. Hydroxychloroquine-induced cardiomyopathy and heart failure in twins. Journal of Thoracic Disease, v. 10, n. 1, p. E70-E73, 2018.

ZHU, N. et al. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, v. 382, n. 8, p. 727-733, 2020.

ZHOU, D.; DAI, S. M.; TONG, Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. Journal of Antimicrobial Chemotherapy,2020.

DOI: https://doi.org/10.34117/bjdv6n6-446


  • There are currently no refbacks.