Importância prognóstica dos níveis transcricionais do gene TNRC6A em pacientes com Câncer de Mama / Prognostic relevance of transcriptional levels of TNRC6A gene in patients with Breast Cancer

Raiane Aparecida dos Santos Machado, Sara Teixeira Soares Mota, Larissa Vargas, Adriana Freitas Neves, Yara Cristina de Paiva Maia, Thaise Gonçalves de Araújo

Abstract


O câncer de mama (CAM) é o câncer mais comumente diagnosticado entre as mulheres no mundo ocidental, com um número crescente de óbitos. A busca de marcadores tumorais na avaliação do prognóstico dessa doença tem se tornado crucial para a escolha terapêutica, o que impacta diretamente a sobrevida das pacientes. A proteína TNRC6A tem sido descrita associada às vias de miRNA, regulando toda a maquinaria celular de células normais e tumorais. O presente estudo tem como objetivo avaliar a expressão dos transcritos do gene TNRC6A e sua correlação com a ocorrência e progressão do CAM. Foram coletadas 43 amostras de sangue periférico de pacientes com CAM e 44 com Doença Benigna da Mama (DBM). Em cada amostra foi realizada a transcrição reversa seguida de ensaios de qPCR. Com a análise dos níveis de mRNA verificou-se que não houve uma diferença significativa entre o grupo CAM e DBM. Além disso, os dados de idade, receptores hormonais e proliferação celular também não mostraram associação com o marcador. Contudo, menores níveis foram identificados em pacientes com comprometimento dos gânglios linfáticos axilares, evidenciando a importância do gene TNRC6A na progressão de tumores mamários.

 


Keywords


Câncer de Mama. miRNA. TNRC6A, Linfonodos.

References


ANDORFER, C, A; NECELA, B, M; THOMPSON, E, A; PEREZ, E, A. MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. Trends in Molecular Medicine, v. 17, n. 6, p. 313-9, 2011.

ALSNER, J; YILMAZ, M; GULDBERG, P; HANSEN, L, L; OVERGAARD, J. Heterogeneity in the clinical phenotype of TP53 mutations in breast cancer patients. Clinical Cancer Research, v.6, n. 10, p. 3923, 2000.

ASHBY, J; FLACK, K; JIMENEZ, L, A; DUAN, Y; KHATIB, A, K; SOMLO, G; WANG, S, E; CUI, X; ZHONG, W. Distribution profiling of circulating microRNAs

BARRY, P; VATSIO, A; SPITERI I; et al. The Spatiotemporal Evolution of Lymph Node Spread in Early Breast Cancer. Clinical Cancer Research. 2018

BERTOLI, G; CAVA, C; CASTIGLIONI, I. MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. Theranostics, v. 5, n. 10, p. 1122-1143, 2015.

BOLAND, C, R; THIBODEAU, S, N; HAMILTON, S, R; SIDRANSKY, D; ESHLEMAN, J, R; BURT, R, W; MELTZER, S, J; RODRIGUEZ-BIGAS, M, A; FODDE, R; RANZANI, G, N; SRIVASTAVA, S. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Research, v. 58, n. 22, p. 5248-57, 1998.

DANKO, M; BENNETT, K; ZHAI, J; MARKS, J; OLSON, J. Improved staging in node-positive breast cancer patients using lymph node ratio: results in 1,788 patients with long term follow-up. Journal of the American College of Surgeons, v. 210, n. 5, p.795-805.

DEN, H, P; SAVAGE, M, I; BROWN, P, H. Targeted therapy for breast cancer prevention. Frontiers in oncology. 2013.

HANAHAN, D; WEINBER, R, A. Hallmarks of cancer: the next generation. Cell, v. 144, n.5, p. 646-74, 2011.

INSTITUTO NACIONAL DO CÂNCER. Mama. Disponível em:< https://www.inca.gov.br/tipos-de-cancer/cancer-de-mama>. Acesso em: 27 de maio 2020.

KARLIKOVA, M; TOPOLCAN, O; NARSANSKA, A; KUCERA, RADEK; TRESKOVA, I; TRESKA, V. Circulation Growth and Angiogenic Factors and Lymph Node Status in early-stage Breast Cancer- A pilot Study. Anticancer Research,v. 36, p.4209-4214, 2016.

KIM, M, S; OH, J, E; KIM, Y, R; PARK, S, W; KANG, M, R; KIM, S, S; AHN, C, H; YOO, N, J; LEE, S. H. Somatic mutations and losses of expression of microRNA regulation-related genes AGO2 and TNRC6A in gastric and colorectal cancers. Journal of Pathology, v, 221, n. 2, p. 139-46, 2010.

KUMAR, P; AGGARWAL R. An Overview of triple- negative Breast Cancer. Archives of Gynecology and Obstretic, v. 293 n. 2, p. 247- 269, 2016.

LI, J; ZHANG, Z; ROSENZWEIG, J; WANG, YY, CHAN, DW. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clinical Chemistry, v. 48, n. 8, p. 1296-304, 2002.

LOWERY, A, J; MILLER, N; DEVANEY, A; McNEIL, R, E; DAVOREN, P, A; LEMETRE, C; BENES, V; SCHMIDT, S; BLAKE, J; BALL, G; KERIN, M, J. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Research, 2009.

NERI, A; MARRELLI, D; ROVIELLO, F; de STEFANO, A; GUARNIERI, A; PALLUCA, E; PINTO, E. Prognostic value of extracapsular extension of axillary lymph node metastases in T1 to T3 breast cancer. Annals of Surgical Oncology, v. 12, n. 3, p. 246-53, 2005.

NISHI, K; TAKAHASHI, T; SUZAWA, M; MIYAKAWA, T. NAGASAWA, T, Control of the localization and function of a miRNA silencing component TNRC6A by Argonaute protein. Nucleic Acids Research,v.43, n.20, p.9856-73, 2015.

PATEL, N; PRAKASH, N. Principles and tools for primer design. Biological Sciences. 2013.

PURUSHOTHAM, A, D; UPPONI, S; KLEVESATH, M, B; BOBROW, L; MILLAR, K; MYLES, J, P; DUFFY, S, W. Morbidity after sentinel lymph node biopsy in primary breast cancer: results from a randomized controlled trial. Journal of Clinical Oncology, v. 23, n. 19, p:4312-21, 2005.

QU, H; XU, W; HUANG, Y; YANG, S. Circulating miRNAs: promising biomarkers of human cancer. Asian Pacific Journal of Cancer Prevention, v.12, p.1117–1125, 2011.

REZAEEJAM, H; SHIRAZI, A; VALIZADEH, M; IZADI, P. Candidate gene biodosimeters of mice and human exposure to ionizing radiation by quantitative reverse transcription polymerase chain reaction. Journal of Cancer Research and Therapeutics, v.11, n.3, p.549-57, 2015.

SHEN, J; STASS, S, A; JIANG, F. MicroRNAs as potential biomarkers in human solid tumors. Cancer Letters, v.329, p.125–136, 2013.

SHI, M; LIU, D; DUAN, H; SHEN, B; GUO, N. Metastasis-related miRNAs, active players in breast cancer invasion, and metastasis. Cancer Metastasis Reviews, v.29, p.785–799, 2010.

TONELLOTTO, F; BERGMANN, A; de SOUZA ABRAHÃO, K; de AGUIAR S, BELLO, M; THULER, L. Impact of Number of Positive Lymph Nodes and Lymph Node Ratio on Survival of Women with Node- Positive Breast Cancer. European Journal of Breast Health, v.15, n. 2, p. 76-84, 2019.

THOMPSON, A, M. New standards of care in the management of the axilla. Current Opinion Oncology, v.24, n.6, p.605–11, 2012.

WANG, B; LI, J; SUN, M; SUN, L; ZHANG, X. miRNA expression in Breast Cancer varies with lymph node metastasis and other clinicopathologic features. IUBMB LIFE, v.66, n.5, p.371-7, 2014.

YANG, P; DU, C, W; KWAN, M; LIANG, S, X; ZHANG, G, J. The impact of p53 in predicting clinical outcome of breast cancer patients with visceral metastasis. Science Reports, 2013.

ZHENG, M; SUN, X; LI, Y; ZUO, W. MicroRNA-145 inhibits growth and migration of breast cancer cells through targeting oncoprotein ROCK1. Tumour Biology, v.37, p.8189–96, 2016.




DOI: https://doi.org/10.34117/bjdv6n6-321

Refbacks

  • There are currently no refbacks.