Different methodological approaches to natural vulnerability to erosion in southeastern Brazil / Diferentes abordagens metodológicas da vulnerabilidade natural à erosão no sudeste do Brasil

Ana Claudia Pereira Carvalho, Diego Peruchi Trevisan, Ana Paula Jacó, Naara Aline Tossani de Melo, Polyanna da Conceição Bispo, Luciana Ruggiero Bachega, Junio da Silva Luiz, José Augusto Di Lollo, Luiz Eduardo Moschini, Reinaldo Lorandi

Abstract


The natural vulnerability addresses the processes of morphogenesis and pedogenesis integrating information related to the rocky substrate, soils, geomorphology, vegetation. The study of natural variability is essential for understanding ecosystems in the face of change processes in the environment. This work aimed to analyze the natural vulnerability to the occurrence of erosion, adopting a method based on Crepani and Analysis Hierarchical Process (AHP) method in the Rio Claro Watershed - São Paulo - Brasil. Four information plans were used in the 1:50000 scale, being: geomorphology, pedology, geology and vegetation/anthropic intervention. The Natural Vulnerability to Erosion Chart is classified into five classes (Very Low, Low, Average, High, and Very High). Comparing the charts generated by the two methods based on Crepani et al. (2001) and Saaty (1980), there was a difference in the Very Low and High vulnerability classes. The most evident class in both charts is the average vulnerability, corresponding 94.55km² of the area in Crepani Method chart, and 93.34km² in AHP Method chart, followed by the “Low” class corresponding of 55.56km² and 76.67% respectively the Crepani and AHP methods. For the "High" class there was a decrease of 48.28% when compared to the two cards, the "Very high" class suffered the least change (-0.09%), while the "Very low" class increased above 100%. The methods employed allowed the generation of results that show the reality of the study area, it is worth mentioning that the Crepani method is more generic because it considers the similarity of the information plans for the vulnerability analysis, whereas the AHP method presents the advantage of hierarchizing both information plans and their classes, highlighting the relative importance of natural vulnerability to erosion.

 


Keywords


AHP Method; Crepani Method; Natural Vulnerability; Anthropic Activity; GIS.

References


AUFFRET, G. A.; RICO, Y.; BULLOCK, J. M.; HOOFTMAN, D. A. P.; PAKEMAN, R. J.; SOONS, M. B.; ESTEBAN, A. S.; TRAVESET, A.; WAGNER, H. H.; COUSINS, S. A. Plant functional connectivity - integrating landscape structure and effective dispersal. Journal of Ecology, v.105, n.5, p.100-115, 2017.

BRASIL. CNRH. Resolução n. 32, de 15 de outubro de 2003. Anexo I. Conselho Nacional de Recursos Hídricos. Brasília, DF: Ministério do Meio Ambiente, 2003.

CARDOSO, D. P.; SILVA, M. L. N.; CARVALHO, G. J.; FREITAS, D. A. F.; AVANZI, J. C. Plantas de Cobertura no Controle das Perdas de Solo, Água e Nutrientes por Erosão Hídrica. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 16, p. 632-638, 2012.

CEPAGRI - Centro de Pesquisas Meteorológicas e Climáticas Aplicadas a Agricultura, da UNICAMP. Disponível em . Acesso em 26 de maio de 2017.

CHAICHI, N.; DAIM, T. U. Landscape Analysis: Connected Lighting System. Infrastructure and Technology Management, p.45-65, 2018.

CHICAS, S. D.; OMINE, K.; FORD, J. B. Identifying erosion hotspots and assessing communities’ perspectives on the drivers, underlying causes and impacts of soil erosion in Toledo’s Rio Grande Watershed: Belize. Applied Geography, v. 68, p. 57-67, 2016.

CPRM. Serviço Geológico do Brasil. Sistema de Informações de Águas Subterrâneas (SIAGAS). Disponível em: . Acesso em: 22 mai. 2017.

CREPANI, E.; MEDEIROS, J. S.; HERNANDEZ, P.F.; FLORENZANO, T. G.; DUARTE, V.; BARBOSA, C. C. F. Sensoriamento remote e geoprocessamento aplicados ao zoneamento ecológico-econômico e ao ordenamento territorial. 1. Ed. São José dos Campos/SP: INPE, 2001. 124p.

DEPARTAMENTO DE ÁGUAS E ENERGIA ELÉTRICA (DAEE); INSTITUTO GEOLÓGICO (IG); INSTITUTO DE PESQUISAS TECNOLÓGICAS DO ESTADO DE SÃO PAULO (IPT); SERVIÇO GEOLÓGICO DO BRASIL (CPRM). 2005. Mapa de águas subterrâneas do Estado de São Paulo - Escala 1:1.000.000. Governo do Estado de São Paulo, Conselho Estadual de Recursos Hídricos, v.3. 119p.

FAN, C.; MYINT, S. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landscape and Urban Planning, v.121, p.117-128, 2014.

GALETI, P. A. Práticas de Conservação à Erosão. Campinas: Instituto Campineiro de Ensino Agrícola, 1987. 278 p.

GUERRA, A. J. T. O Início do Processo Erosivo. In: GUERRA, A. J. T.; SILVA, A. S. da; BOTELHO, R. G. M. (Org.). Erosão e Conservação dos Solos: Conceitos, temas e aplicações. 7. ed. Rio de Janeiro: Bertrand Brasil, 2012. Cap. 1. p. 17-50.

HUMAGAIN, K.; PONTILHO-QUINTEIRO, C.; COX, R. D.; CAIN, J. W. Estimating forest canopy cover dynamics in Valles Caldera National Preserve, New Mexico, using LiDAR and Landsat data. Applied Geography, p.120-132, 2018.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. Brazilian Institute of Geography and Statistics. Topografic Charts - Rio Claro - SF-23-V-C-IV-2, SF-23-V-C-V-1, SF-23-V-C-IV-4 and SF-23-V-C-V-3, 1971.

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE. TOPODATA, banco de dados geomorfométricos do Brasil. Disponível em: . Acesso em: 03 de julho de 2017.

LOPES, M. S.; SALDANHA, D. L. Análise de Vulnerabilidade Natural à Erosão como subsídio ao planejamento ambiental do oeste da Bacia Hidrográfica do Camaquã-RS. Revista Brasileira de Cartografia, v.68, n.9, p. 1689-1708, 2016.

LORANDI, R.; LOLLO, J.A. Carta de Unidades Aquíferas Aplicada ao Zoneamento GeoAmbiental, 2016.

MALCOLM, J. R.; LEHMAN, S. M. Edge effects in tropical dry forests of Madagascar: additivity or synergy? Landscape Ecology. v.32, n.2, p.327-341, 2017.

MARQUEZOLA, D. S.; SERIKAWA, V. S.; LOLLO, J. A.; LORANDI, R. Emprego das unidades de relevo no planejamento territorial da bacia do Rio Claro (SP), na escala 1:50.000. In: SIMPÓSIO DE GEOTECNOLOGIAS NO PANTANAL, n° 6. 22 a 26 out. 2016, Cuiabá-MT. Anais. Cuiabá: Embrapa Informática Agropecuária/INPE, 2016. p. 255 -264.

MAVROMATIDI, A.; BRICHE, E.; CLAEYS. Mapping and analyzing socio-environmental vulnerability to coastal hazards induced by climate change: An application to coastal Mediterranean cities in France. Cities. V. 72, P. 189-200. 2017.

O'REILLY, K. The influence of land use changes on open defecation in rural India. Applied Geography. V. 99, p.133-139, 2018.

SAATY, T L. The Analytic Hierarchy Process. New York: Mcgraw-hil, 1980.

SÃO PAULO. Unidades Básicas de Compartimentação do Meio Físico (UBC) do Estado de São Paulo. INSTITUTO GEOLÓGICO/COORDENADORIA DE PLANEJAMENTO AMBIENTAL, SECRETARIA DO MEIO AMBIENTE DO ESTADO DE SÃO PAULO, 2014.

STRAHLER, A. N. Hypsometric (area-altitude) - analysis of erosion al topography. Geological Society of America Bulletin, v.63, n.10, p.1117-1142, 1952.

TIESKENS, K. F.; SCHULP, C. J. E; LEVERS, C.; LIESKOVSKY, J.; KUEMMERLE, T.; PILENINGER, T.; VERBURG, P. H. Characterizing European cultural landscapes: Accounting for structure, management intensity and value of agricultural and forest landscapes. Land Use Policy, v.62, p.29-39, 2017.

TOPPING, C. J.; DALBY, L.; SKOV, F. Landscape structure and management alter the outcome of a pesticide ERA: Evaluating impacts of endocrine disruption using the ALMaSS European Brown Hare model. Science of The Total Environment, v.541, n.15, p.1477-1488, 2016.

TROMBETA, L.R.; GARCIA, R.M.; NUNES, R.S.; GOUVEIA, I.C.M.C.; LEAL, A.C. Análise da fragilidade potencial e emergente do relevo da unidade de gerenciamento de recursos hídricos pontal do Paranapanema, São Paulo, Brasil. Caderno de prudentino de geografia, nº36, Volume especial, p.159-173, 2014.

TURNER, M.; SIMARD, M. Using Spatial Statistics and Landscape Metrics to Compare Disturbance Mosaics, p.175-190. In: GERGEL, S. E.; TURNER, M. G. Learning Landscape Ecology: A Practical Guide to Concepts and Techniques, 1srt ed, 2017, 300p.

USGS. United States Geological Survey. LandSat 8 - sensor OLI/TIRS, bands 6,5,4. Orbit/point 220/75 - 23 de february de 2017.

VAN ZANTEN, B. T.; VAN BERKEL, D. B.; MEENTEMEYER, R. K.; SMITH, J. W.; TIESKENS, K. F.; VERBURG, P. H. Continental scale quantification of landscape values using social media data. Proceedings of the National Academy of Sciences in the United States of America, v.113.46, p.12974-12979, 2016.

YANG, Y. et al. Integrating multi-source data to improve water erosion mapping in Tibet, China. Catena, v. 169, n. May, p. 31-45, 2018.

ZELLWEGER, F.; MORSDORF, F.; PURVES, R. S.; BRAUNISCH, V.; BOLLMANN, K. Improved methods for measuring forest landscape structure: LiDAR complements field-based habitat assessment. Biodiversity and Conservation, v.23, n.2, p.289-307, 2014.




DOI: https://doi.org/10.34117/bjdv6n6-276

Refbacks

  • There are currently no refbacks.