Propriedades do resveratrol em pesquisas clínicas e na indústria alimentícia / Resveratrol properties in clinical research and food industry

Larissa Christine Tuffi, Carlos Eduardo Rocha Garcia

Abstract


O resveratrol é um polifenol encontrado na casca da uva e amplamente estudado por ser o principal bioativo do vinho tinto. Seu uso como agente terapêutico demonstra eficácia em doenças cardiovasculares, câncer, diabetes e obesidade. O objetivo desse estudo é revisar a utilização do resveratrol em casos clínicos e na indústria de alimentos elucidando os benefícios e a dose terapêutica usual. Os resultados demonstraram que as atividades do resveratrol são atenuantes de doenças inflamatórias, câncer, desenvolvimento microbiano e diabetes. A principal fonte industrial deste polifenol é o resíduo de uva, onde também se encontra apreciável concentração de fibras alimentares que estabelecem outro benefício à saúde dos consumidores.

 


Keywords


Resveratrol, Antioxidante, Resíduo de uva.

References


ACEVEDO-FANI, A. et al. Formation, stability and antioxidant activity of food-grade multilayer emulsions containing resveratrol. Food Hydrocolloids, v. 71, p. 207–215, 2017.

ALBERDI, G. et al. Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chemistry, v. 141, n. 2, p. 1530–1535, 2013.

BAUR, J. A. et al. Are sirtuins viable targets for improving healthspan and lifespan? Nature Reviews Drug Discovery, v. 11, n. 6, p. 443–461, 2012.

BEKHIT, A. E. D. et al. The effects of natural antioxidants on oxidative processes and metmyoglobin reducing activity in beef patties. Food Chemistry, v. 81, n. 2, p. 175–187, 2003.

BERMAN, A. Y. et al. The therapeutic potential of resveratrol : a review of clinical trials. Precision Oncology, n. July, 2017.

BRASNYÓ, P. et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. British Journal of Nutrition, v. 106, n. 03, p. 383–389, 2011.

BROWN, V. A. et al. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: Safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Research, v. 70, n. 22, p. 9003–9011, 2010.

BUHRMANN, C. et al. Sirt1 is required for resveratrol-mediated chemopreventive effects in colorectal cancer cells. Nutrients, v. 8, n. 3, p. 1–21, 2016.

CATALGOL, B. et al. Resveratrol: French paradox revisited. Frontiers in Pharmacology, v. 3, p. 1–18, 2012.

CHANG, H.; GUARENTE, L. SIRT1 and other sirtuins in metabolism. Trends in Endocrinology & Metabolism, p. 1–8, 2013.

CHEN, S. et al. Resveratrol improves glucose uptake in insulin-resistant adipocytes via Sirt1. Journal of Nutritional Biochemistry, v. 55, p. 209–218, 2018.

CHONG, J.; POUTARAUD, A.; HUGUENEY, P. Metabolism and roles of stilbenes in plants. Plant Science, v. 177, n. 3, p. 143–155, 2009.

CVEJIC, J. M. et al. Determination of trans- and cis-resveratrol in Serbian commercial wines. Journal of Chromatographic Science, v. 48, n. 3, p. 229–234, 2010.

DA SILVA, G. M. et al. High prevalence of inadequate dietary fiber consumption and associated factors in older adults: A population-based study. Revista Brasileira de Epidemiologia, v. 22, p. 1–13, 2019.

DE VRIES, K.; STRYDOM, M.; STEENKAMP, V. Bioavailability of resveratrol: Possibilities for enhancement. Journal of Herbal Medicine, p. 1–18, 2017.

DEMIRKOL, M.; TARAKCI, Z. Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yoghurt. LWT - Food Science and Technology, v. 97, p. 770–777, 2018.

FABJANOWICZ, M.; PŁOTKA-WASYLKA, J.; NAMIEŚNIK, J. Detection, identification and determination of resveratrol in wine. Problems and challenges. Trends in Analytical Chemistry, v. 103, p. 21–33, 2018.

HE, S.; YAN, X. From Resveratrol to Its Derivatives: New Sources of Natural Antioxidant. Current Medicinal Chemistry, v. 20, n. 8, p. 1005–1017, 2013.

HUANG, X. et al. Resveratrol: Review on its discovery, pharmacokinetics and anti-leukemia effects. Chemico-Biological Interactions, v. 306, p. 29–38, 2019.

KIM, E. N. et al. The protective effect of resveratrol on vascular aging by modulation of the renin–angiotensin system. Atherosclerosis, v. 270, p. 123–131, 2018.

KURŠVIETIENĖ, L. et al. Multiplicity of effects and health benefits of resveratrol. Medicina, v. 52, n. 3, p. 148–155, 2016.

LIANG, L. et al. Pharmacokinetics, tissue distribution and excretion study of resveratrol and its prodrug 3,5,4′-tri-O-acetylresveratrol in rats. Phytomedicine, v. 20, n. 6, p. 558–563, 2013.

MARCHIANI, R. et al. Yogurt Enrichment with Grape Pomace: Effect of Grape Cultivar on Physicochemical, Microbiological and Sensory Properties. Journal of Food Quality, v. 39, n. 2, p. 77–89, 2016.

NARCISO, L. G. et al. Resveratrol atenua o estresse oxidativo e a lesão muscular de ratos sedentários submetidos ao exercício físico. Arq. Bras. Med. Vet. Zootec., v. 70, n. 3, p. 850–856, 2018.

OH, W. Y.; SHAHIDI, F. Antioxidant activity of resveratrol ester derivatives in food and biological model systems. Food Chemistry, v. 261, n. March, p. 267–273, 2018.

PANDEY, K. B.; RIZVI, S. I. Resveratrol may protect plasma proteins from oxidation under conditions of oxidative stress in vitro. Journal of the Brazilian Chemical Society, v. 21, n. 5, p. 909–913, 2010.

RAŠKOVIĆ, A. et al. Resveratrol supplementation improves metabolic control in rats with induced hyperlipidemia and type 2 diabetes. Saudi Pharmaceutical Journal, v. 27, n. 7, p. 1036–1043, 2019.

ROCKENBACH, I. I. et al. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Research International, v. 44, n. 4, p. 897–901, 2011.

SMOLIGA, J. M.; BLANCHARD, O. Enhancing the delivery of resveratrol in humans: If low bioavailability is the problem, what is the solution? Molecules, v. 19, n. 11, p. 17154–17172, 2014.

SPIGNO, G. et al. Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste. Journal of Food Engineering, v. 114, n. 2, p. 207–214, 2013.

ŠPORIN, M. et al. Quality characteristics of wheat flour dough and bread containing grape pomace flour. Food Science and Technology International, v. 24, n. 3, p. 251–263, 2018.

TAKAOKA, M. The Phenolic Substances of White Hellebore (Veratrum Grandiflorum Loes. Fill). V. Nippon Kagaku Kaishi, v. 61, n. 10, p. 1067–1069, 1940.

TIAN, B.; LIU, J. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. Journal of the Science of Food and Agriculture, v. 100, n. 4, p. 1392–1404, 2020.

VANDERLEI, D. R.; QUADROS, C. P.; SÁ, C. S. Geleia de bagaço de uva e chia proveniente da produção vinícola da região do submédio São Francisco. Brazilian Journal of Development, v. 6, n. 1, p. 4247–4248, 2020.

VESTERGAARD, M.; INGMER, H. Antibacterial and antifungal properties of resveratrol. International Journal of Antimicrobial Agents, v. 53, n. 6, p. 716–723, 2019.

WALLE, T. et al. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metabolism and Disposition, v. 32, n. 12, p. 1377–1382, 2004.

XIA, N. et al. Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol. Nitric Oxide, v. 32, p. 29–35, 2013.

YU, J.; AHMEDNA, M. Invited review Functional components of grape pomace: their composition, biological properties and potential applications. Food Science and Technology, v. 48, n. 2, p. 221–237, 2013.

ZHU, F. et al. Advance on the bioactivity and potential applications of dietary fibre from grape pomace. Food Chemistry, v. 186, p. 207–212, 2015.

ZIDIOTTI, G. R. et al. Desenvolvimento de uma bala de gelatina adicionada de resveratrol como alternativa de combate ao colesterol infantil. Brazilian Journal of Development, v. 6, n. 2, p. 8585–8591, 2020.




DOI: https://doi.org/10.34117/bjdv6n6-156

Refbacks

  • There are currently no refbacks.