Thermal performance improvements for university dormitories in a tropical climate / Alternativas para a melhoria do desempenho térmico para moradias universitárias em clima tropical

Adriana Rodrigues Pereira, Raquel Diniz Oliveira, Simone Queiroz da Silveira Hirashima, Fernanda Mourão Dutra de Oliveira

Abstract


The building envelope exerts considerable influence on maintaining comfortable indoor conditions. Consequently, it is important to better understand the role that the envelope elements play in building thermal performance. This paper presents an improvement proposal for the thermal behavior of a university dormitory located in Belo Horizonte, Brazil. The assessment was carried out in seven bedrooms located on different floors and orientations. EnergyPlus tool and local weather data were used to simulate annual indoor temperatures considering the original envelope and alternatives based on the Brazilian performance building code NBR 15,220/2005. The performance analysis covered degree-hours for heating and cooling and comfort indicators considering 80% acceptability limits set by ASHRAE 55/2017. It was found that changes in building envelopes have significant contributions to the indoor thermal conditions. The results showed that the simulation tool evaluated the global heat transfer in building adequately. Greater wall thermal lag combined with a smaller window opening provided better thermal behavior results considering all simulation models. In a broader sense, the present work contributes to demonstrating that numerical simulation plays an important role in emulating indoor thermal conditions and also fosters improvements in building thermal performance.


Keywords


Building thermal performance. Indoor thermal conditions. Numerical simulation. University dormitory.

Full Text:

PDF

References


W. Natephra, A. Motamedi, N. Yabuki, T. Fukuda, Integrating 4D thermal information with BIM for building envelope thermal performance analysis and thermal comfort evaluation in naturally ventilated environments, Build. Environ. 124 (2017) 194–208. https://doi.org/10.1016/j.buildenv.2017.08.004.

M. Hegger, M. Fuchs, T. Stark, M. Zeumer, Energy manual: sustainable architecture, Walter de Gruyter, 2012.

Brazilian Ministry of Mines and Energy (MME) and Energy Research Company (EPE). Brazilian Energy Balance 2019, Year 2018. EPE, Rio de Janeiro, 2019.

PROCEL EDIFICA, ELETROBRAS. Electrical Appliances Possession and Usage Habits Research for the Residential Sector: PPH Brazil 2019 – Execute Summary. PROCEL EDIFICA, ELETROBRAS, Rio de Janeiro, 2019.

MME - Brazilian Ministry of Mines and Energy. Plano Nacional de Eficiência Energética (PNEf) - Premissas e diretrizes básicas. Ministério de Minas e Energia. Secretaria de Planejamento e Desenvolvimento Energético. Brasília, 2011.

E. N. Garrido, Experience of Living in a College Residence Hall: Impact on its Residents. Psicologia: ciência e profissão, 35 (2015), 726-739. http://dx.doi.org/10.1590/1982-3703001142014

N. B. Vasconcelos, Programa Nacional de Assistência Estudantil: Uma análise da evolução da assistência estudantil ao longo da história da educação superior no Brasil. Ensino Em-Revista, Uberlândia, v.17, n.2, p. 599-616, Jul./dez.2010. 599-615.

I. P. Lacerda, F. Valentini, Impact of Student Housing on Academic Performance and Permanence at the university, Psicologia Escolar e Educacional, SP. v. 22, n.2, Maio/Agosto (2018): 413-423. http://dx.doi.org/10.1590/2175-35392018022524

R. Yeung, A quasi-experimental approach to estimating the impact of collegiate housing. In 31st Annual Appam Research Conference, Washington, DC (2009). https://www.appam.org/conferences/fall/dc2009/papers-submitted.asp.

K. K. Inkelas, S. D. Longerbeam, Working toward a comprehensive typology of living-learning programs. In G. Luna, & J. Gahagan (Eds.), Learning Initiatives in the residential setting (2008) pp. 29-41. Columbia: National Resource Center for the First-Year Experience & Student in Transition.

N. L. Galambos, A. L. Howard, J. L. Maggs, Rise and fall of sleep quantity and quality with student experiences across the first year of university. Journal of Research on Adolescence, 21 (2011) 342-349. http://dx.doi.org/10.1111/j.1532-7795.2010.00679.x.

E. N. Garrido, E. Mercuri, A moradia estudantil universitária como tema na produção científica nacional. Revista Semestral da Associação Brasileira de Psicologia Escolar e Educacional, 17 (2013), 87-95.

F. M. G. Marroquim, Relato do nível de satisfação da residência universitária masculina e feminina da UFPB. In Proceedings of 8th International Seminar on Architecture, Urbanism and Design: Products and Messages for Sustainable Environments - NUTAU 2010, São Paulo, 2010.

ABNT - Brazilian Association of Technical Standards, ABNT NBR 15,220-3: Zoneamento bioclimático Brasileiro e diretrizes construtivas para habitações unifamiliares de interesse social, Rio de Janeiro, 2005.

B. Givoni. Comfort, Climate Analysis and Building Design Guidelines. Energy and Buildings, v.18, n.1, p. 11-23, 1992.

C. Mahoney, Climate and house design. New York, United Nations (ONU) - Design of Low-Cost Housing and Community Facilities Department of Economic and Social Affair, 1971.v.1

P. Sá, Estudos para o estabelecimento de uma escala de temperaturas efetivas no Brasil. Revista Brasileira de Engenharia - Março de 1934. 27: n. 3, p. 67-69, 1934.

B. A. Ribeiro, Contribuição ao estudo térmico. Boletim nº86, Instituto de Higiene de São Paulo, 1945.

P. Fanger, Thermal comfort: analysis and applications in environmental Engineering. United States: McGraw-Hill Book Company, 1970.

R. de Dear, G. S. Brager, D. Cooper, Developing an Adaptive Model of Thermal Comfort and Preference. In: Final Report ASHRAE RP-884, 1997.

R. D. Oliveira, R. V. G. de Souza, A. J. M. Mairink, M. T. G. Rizzi, R. M. da Silva, Thermal Comfort for users according to the Brazilian Housing Buildings Performance Standards. Energy Procedia 78 (2015) 2923 - 2928. https://doi.org/10.1016/j.egypro.2015.11.668.

R. and A.E. ASHRAE, American Society of Heating, ASHARE Standard 55. Thermal Environmental Conditions for Human Occupancy, (2017) 1–52.

F. Nicol, M. Humphreys, Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251, Build. Environ. 45 (2010) 11–17. https://doi.org/10.1016/j.buildenv.2008.12.013.

L.V. De Abreu-harbich, V.L.A. Chaves, M.C.G.O. Brandstetter, Evaluation of strategies that improve the thermal comfort and energy saving of a classroom of an institutional building in a tropical climate, Build. Environ. 135 (2018) 257–268. https://doi.org/10.1016/j.buildenv.2018.03.017.

A.S. Silva, L.S.S. Almeida, E. Ghisi, Decision-making process for improving thermal and energy performance of residential buildings: A case study of constructive systems in Brazil, Energy Build. 128 (2016) 270–286. https://doi.org/10.1016/j.enbuild.2016.06.084.

F. Bre, A. Santos, E. Ghisi, V.D. Fachinotti, Residential building design optimization using sensitivity analysis and genetic algorithm, Energy Build. 133 (2016) 853–866. https://doi.org/10.1016/j.enbuild.2016.10.025.

S. Mirrahimi, M.F. Mohamed, L.C. Haw, N.L.N. Ibrahim, W.F.M. Yusoff, A. Aflaki, The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot-humid climate, Renew. Sustain. Energy Rev. 53 (2016) 1508–1519. https://doi.org/10.1016/j.rser.2015.09.055.

R. Pokhrel, N.D. Ramírez-Beltran, J.E. González, On the assessment of alternatives for building cooling load reductions for a tropical coastal city, Energy Build. 182 (2019) 131–143. https://doi.org/https://doi.org/10.1016/j.enbuild.2018.10.023.

J. Yu, L. Tian, X. Xu, J. Wang, Evaluation on energy and thermal performance for office building envelope in different climate zones of China, Energy Build. 86 (2015) 626–639. https://doi.org/10.1016/j.enbuild.2014.10.057.

ANSI/ASHRAE, Standard 140-2017, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA, 2017.

P.G. Loutzenhiser, H. Manz, S. Moosberger, G.M. Maxwell, An empirical validation of window solar gain models and the associated interactions, Int. J. Therm. Sci. 48 (2009) 85–95. https://doi.org/10.1016/j.ijthermalsci.2008.01.011.

D. Coakley, P. Raftery, M. Keane, A review of methods to match building energy simulation models to measured data, Renew. Sustain. Energy Rev. 37 (2014) 123–141. https://doi.org/10.1016/j.rser.2014.05.007.

F. Roberti, U.F. Oberegger, A. Gasparella, Calibrating historic building energy models to hourly indoor air and surface temperatures: Methodology and case study, Energy Build. 108 (2015) 236–243. https://doi.org/10.1016/j.enbuild.2015.09.010.

A. Cacabelos, P. Eguía, L. Febrero, E. Granada, Development of a new multi-stage building energy model calibration methodology and validation in a public library, Energy Build. 146 (2017) 182–199. https://doi.org/10.1016/j.enbuild.2017.04.071.

J. Yuan, V. Nian, B. Su, Q. Meng, A simultaneous calibration and parameter ranking method for building energy models, Appl. Energy. 206 (2017) 657–666. https://doi.org/10.1016/j.apenergy.2017.08.220.

W. Belazi, S.E. Ouldboukhitine, A. Chateauneuf, A. Bouchair, Uncertainty analysis of occupant behavior and building envelope materials in office building performance simulation, J. Build. Eng. 19 (2018) 434–448. https://doi.org/10.1016/j.jobe.2018.06.005.

X. Du, R. Bokel, A. Van Den Dobbelsteen, Energy & Buildings Spatial configuration, building microclimate and thermal comfort : A modern house case, Energy Build. 193 (2019) 185–200. https://doi.org/10.1016/j.enbuild.2019.03.038.

T. Zhang, H. Yang, Heat transfer pattern judgment and thermal performance enhancement of insulation air layers in building envelopes, Appl. Energy. 250 (2019) 834–845. https://doi.org/10.1016/j.apenergy.2019.05.070.

L. Rincón, A. Carrobé, I. Martorell, M. Medrano, Improving thermal comfort of earthen dwellings in sub-Saharan Africa with passive design, J. Build. Eng. 24 (2019) 100732. https://doi.org/10.1016/j.jobe.2019.100732.

C. Alcarde Alvares, J. Stape, P. Sentelhas, J. Gonçalves, G. Sparovek, Köppen’s climate classification map for Brazil, 2013. https://doi.org/10.1127/0941-2948/2013/0507.

FUMP - Mendes Pimentel University Foundation. University Housing Program. Available in: http://www.fump.ufmg.br/conteudo.aspx?pagina=4.

DPFP – Physical Planning and Projects Department, Executive Project: Blueprints, Descriptive Memorial and Specification – University Housing III, 2015.

D.D.E.E. Civil, S. Weber, R. Lamberts, Elaboração de uma biblioteca de componentes construtivos brasileiros para o uso no programa EnergyPlus, 2017.

ABNT - Brazilian Association of Technical Standards, NBR 15,220-2: Desempenho térmico de edificações: Parte 2: Métodos de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes de edificações, Rio de Janeiro, 2005.

C.D. Pereira, D.L. Marinoski, R. Lamberts, S. Guths, E. Ghisi, Avaliação experimental do espectrômetro Alta II e sua aplicação na normatização brasileira, Ambient. Construído (2017) 197–213.

INMETRO - Brazilian Institute of Metrology, Quality, and Technology, Regulamento Técnico da Qualidade Para o Nível de Eficiência Energética Edificações Residenciais, RTQ-R. Portaria n.18, de 16 de Janeiro de 2012. INMETRO, 2012.

Brazilian climate archives of INMET 2018, LabEEE/UFSC - Laboratory Energy Efficiency In Buildings of the Federal University of Santa Catarina (n.d.). Available on: http://www.labeee.ufsc.br/downloads/arquivos-climaticos/inmet2018.

A.R. Pereira, R.D. Oliveira, S.Q.D.S. Hirashima, Model calibration of a Brazilian university dormitory for thermal simulation purposes, in: 51th AiCARR Int. Conf. Hum. Dimens. Build. Energy Perform., Venice, Italy, 2019: p. 15.

M. Robati, G. Kokogiannakis, T.J. Mccarthy, Impact of structural design solutions on the energy and thermal performance of an Australian office building, Build. Environ. 124 (2017) 258–282. https://doi.org/10.1016/j.buildenv.2017.08.018.

INMET - Brazilian Institute of Meteorology, Normais Climatológicas do Brasil (1981 - 2010), Brasília, 2018.

Z. Wu, N. Li, P. Wargocki, J. Peng, J. Li, Energy & Buildings Adaptive thermal comfort in naturally ventilated dormitory buildings in Changsha, China, 186 (2019) 56–70. https://doi.org/10.1016/j.enbuild.2019.01.029.

Z. Wang, A. Li, J. Ren, Y. He, Thermal adaptation and thermal environment in university classrooms and offices in Harbin, Energy Build. 77 (2014) 192–196. https://doi.org/10.1016/j.enbuild.2014.03.054.

R. De Vecchi, M.J. Sorgato, M. Pacheco, C. Candido, Application of the adaptive model proposed by ASHRAE 55 in the Brazilian climate context: raising some issues, in: Proc. 8thWindsor Conf. Count. Cost Comf. a Chang. World, Windsor, 2014: p. 13.

D. Coley, T. Kershaw, Changes in internal temperatures within the built environment as a response to a changing climate, Build. Environ. 45 (2010) 89–93. https://doi.org/10.1016/j.buildenv.2009.05.009.

ABNT - Brazilian Association of Technical Standards, NBR 6,118: Projeto de estruturas de concreto - Procedimento, Rio de Janeiro, 2004.




DOI: https://doi.org/10.34117/bjdv6n6-141

Refbacks

  • There are currently no refbacks.