Assimilation of amino acids present in must based on sugarcane juice by Saccharomyces cerevisiae under fermentative stress / Assimilação de aminoácidos presentes em mosto à base de suco de cana-de-açúcar por Saccharomyces cerevisiae sob estresse fermentativo

Nislene Pires dos Santos, Maria do Socorro Mascarenhas Santos, Claudia Andrea Lima Cardoso, Margareth Batistote


In Brazil, sugar cane juice and molasses are used as a substrate for the production of ethanol. This substrate is called wort and is rich in carbon source and low in nitrogen source. Thus, this study aims to evaluate the assimilation profile of amino acids present in the must based on sugarcane juice by the yeasts Saccharomyces cerevisiae under different conditions of fermentative stress. Catanduva-1 and Red Star strains were used, grown in the medium (2% YPD), sterilized at 120 ° C for 20 minutes and incubated at 30 ° C for 10 hours to produce biomass that was inoculated in the base fermentation medium. of wort in concentrations of (18, 22 and 25) ° Brix at temperatures of 30 ° C and 40 ° C, and aliquots were collected at different times for the analysis of amino acid assimilation. Amino acid quantification was performed by high performance liquid chromatography (HPLC). It is possible to observe that there was a difference in the assimilation profile of the amino acids present in the must by Saccharomyces cerevisiae, mainly in relation to the concentrations of the amino acids valine, methionine, alanine, threonine and tryptophan. According to the discriminant analysis, fermentation time and temperature were determining factors for the consumption of yeast amino acids.




Carbon and nitrogen sources, Yeast, Metabolism, Ethanol production.

Full Text:



AZHAR, S. H. M.; ABDULLA, R.; JAMBO, S. A.; MARBAWI, H.; GANSAU, J. A.; FAIK, A. A. M.; RODRIGUES, K. F. Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, (10):52-61, 2017.

BELLIDO, C.; BENITO, G. G.; COCA, M.; LUCAS, S.; CUBERO, M. T. G. Influence of aeration on bioethanol production from ozonized wheat straw hydrolysates using Pichia stipites. Bioresource Technology, (133):51-58, 2013.

BUTZKE, C. E.; PARK, S. K. Impact of Fermentation Rate Changes on Potential Hydrogen Sulfide Concentrations in Wine. Journal Microbiol Biotechnol, 21:519-524, 2011.

CARRILLO, E. P.; SALDIVAR, S. O. S.; HERNANDEZ, C. C.; CALLEJAS, M. L. C. Addition of protease during starch liquefaction affects free amino nitrogen, fusel alcohols and ethanol production of fermented maize and whole and decorticated sorghum mashes. Biochemical Engineering Journal, (67):1-9, 2012.

DELLA-BIANCA, B. E.; GOMBERT, A. K. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry. Antonie van Leeuwenhoek, 104:1083-1095, 2013.

GUTIÉRREZ-RIVERA, B.; ORTIZ-MUÑIZ, B.; GÓMEZ-RODRÍGUEZ, J.; CÁRDENASCÁGAL, A.; GONZÁLEZ, J. M. D.; AGUILAR-USCANGA, M. G. Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses “B” in a mixed yeast culture. Renewable Energy, (74):399-405, 2015.

HARI, S.; JEBITTA, R.; SIVARAMAN, K. Production and characterization of sugar cane juice powder. Journal of Sugarcane Research, 3(1):20-34, 2013.

HERNÁNDEZ-CARBAJAL, G.; RUTIAGA-QUIÑONES, O. M.; PÉREZ-SILVA, A.; SAUCEDO-CASTAÑEDA, G.; MEDEIROS, A.; SOCCOL, C. R.; SOTO-CRUZ, N. Ó. Screening of native yeast from Agave duranguensis fermentation for isoamyl acetate production. Brazilian Archives of Biology and Technology, 56(3), 357-363, 2013.

ISMAIL, K. S. K.; SAKAMOTO, T.; HASUNUMA, T.; ZHAO, X. Q.; KONDO, A. Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose. Biotechnology Journal, (9):1519-1525, 2014.

KURTZMAN, C. P.; FELL, J. W.; BOEKHOUT, T. (Eds). The yeasts: a taxonomic study. Amsterdam: Elsevier, ed, 5, 2011.

KURTZMAN, C. P.; MATEO, R. Q.; KOLECKA, A.; THEELEN, B.; ROBERT, V.; BOEKHOUT, T. Advances in yeast systematics and phylogeny and their use as predictors of biotechnologically important metabolic pathways. FEMS Yeast Research, (15):1-17, 2015.

LEI, H.; ZHENG, L.; WANG, C.; ZHAO, H. Effects of worts treated with proteases on the assimilation of free amino acids and fermentation performance of lager yeast. International Journal of Food Microbiology, (161):76-83, 2013.

MA, M.; LIU, Z. L. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Applied Microbiol Biotechnol, 87:829-845, 2010.

MARQUES, M. O.; MUTTON, M. A.; NOGUEIRA, T. A. R.; TASSO JÚNIOR, L. C.; NOGUEIRA, G. A.; BERNARDI, J. H. Tecnologias na agroindústria canavieira. Jaboticabal: FCAV, 9-16 2008.

MORENO-ARRIBAS, M. V.; POLO, M. C. Special wines production. Wine Chemistry and Biochemistry. Madrid: Springered. Springer-Verlag, Nova Iorque 2009, 59p.

NOGUEIRA, L. A. H.; CAPAZ, R. S. Biofuels in Brazil: Evolution, achievements and perspectives on food security. Global Food Security, (2):117-125, 2013.

PEREIRA, A. F.; SILVA, P. H. A.; PINHEIRO, P. F.; BRAGA, L. M.; BRAGA PINHEIRO, C. A. Adição de fontes de nitrogênio e de duas linhagens de levedura na fermentação alcoólica para produção de cachaça. Revista de Engenharia Química e Química, (1):45-59, 2015.

PITT, J. I.; HOCKING, A. D. Fungi and Food Spoilage. 3 ed. Springer Dordrecht, Heidelberg, London, New York, 2009.

SANTOS, E. F. S.; SCHAUTZ, L. C. A.; CARDOSO, C. A. L.; ERNANDES, J. R.; BATISTOTE, M. O efeito da complexidade estrutural da fonte de carbono e nitrogênio no desempenho fermentativo de leveduras indústrias. Ciência e Natura, 2:09-014, 2013.

SILVA, R. O. D.; CEREDA, M. P.; GOMES, E.; MARTINS, G. M.; PAGNOCCA, F. C.; SILVA, R. D. Selection of xilose-fermenting yeast strains. Brazilian Archives of Biology and Technology, 59, 2016.

SIMANCAS, N. B.; GIESE, E.; ARÉVALO-VILLENA, M.; ÚBEDA, J.; BRIONES, A. Amino acid uptake by wild and commercial yeasts in single fermentations and co-fermentations. Food Chemistry, 127: 441-446, 2015.

SOUSA, J. L. U.; MONTEIRO, R. A. B. Fatores Interferentes na Fermentação Alcoólica para a Produção de Etanol. FAZU em Revista, 2:100-107, 2012.

TÁVORA, F. L. História e Economia dos Biocombustíveis no Brasil. Centro de Estudos da Consultoria do Senado. 2011; p. 89.

WANG, K.; MAO, Z.; ZHANG, C.; ZHANG, J.; ZHANG, H.; TANG, L. Influence of nitrogen sources on ethanol fermentation in an integrated ethanol–methane fermentation system. Bioresource Technology, (120):206-211, 2012.

ZABED, H.; SAHU, J. N.; BOYCE, A. N.; FARUQ, G. Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renewable and Sustainable Energy Reviews, (66):751-774, 2016.

ZHAO, X. Q.; BAI, F. W. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. Journal of Biotechnology, (144):23-30, 2009.



  • There are currently no refbacks.