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ABSTRACT 

Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae), the eucalyptus bronze bug, is 

among the many species of insect pests that affect commercial eucalyptus forests in Brazil. T. 

peregrinus reduces the photosynthetic capacity of trees and, in some cases, can lead to the 

complete death of plants. The objective of this research was to evaluate the potential of 

medium spatial resolution images, available for free, in the mapping and prediction of attacks 

caused by T. peregrinus in eucalyptus plantations in Brazil, using Partial Least Squares 

Discriminant Analysis (PLS-DA). The PLS-DA regression model selected three main 

components, with a cross-validation error rate of 0.245 for the prediction and mapping of 

stands attacked by T. peregrinus. The important bands were selected from the PLS-DA model, 

using variable importance in the projection (VIP). The VIP bands predicted healthy and 
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attacked stands with an accuracy of 97.7% in an independent validation dataset. This study 

demonstrates the potential of medium spatial resolution images as a viable alternative to 

successfully characterize and map T. peregrinus attacks in planted forests in Brazil. 

 

Keywords: Insects pests; medium resolution images; multivariate analysis; Partial Least 

Squares Discriminant Analysis. 

 

 

RESUMO 

Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae), percevejo bronzeado, está entre 

as muitas espécies de insetos-praga que afetam as florestas comerciais de eucalipto no Brasil. 

T. peregrinus reduz a capacidade fotossintética das árvores e, em alguns casos, pode levar à 

morte completa das plantas. O objetivo desta pesquisa foi avaliar o potencial de imagens 

Landsat 5 TM, de média resolução espacial, disponibilizada gratuitamente, no mapeamento e 

predição de ataques causados por T. peregrinus em plantações de eucalipto no Brasil, usando 

a Análise Discriminante dos Mínimos Quadrados Parciais (PLS-DA). O modelo de regressão 

PLS-DA selecionou três componentes principais, com erro de 0,245 na validação cruzada na 

predição e no mapeamento de talhões atacados por T. peregrinus. Bandas importantes foram 

selecionadas a partir do modelo PLS-DA, utilizando a importância variável na projeção (VIP). 

As bandas VIP previram talhões saudáveis e atacados com uma precisão de 97,7% em um 

conjunto de dados de validação independente. Este estudo demonstra o potencial das imagens 

de média resolução espacial como uma alternativa viável para caracterizar e mapear, com 

sucesso, ataques de T. peregrinus em florestas plantadas no Brasil. 

 

Palavras-chave: Análise discriminante dos mínimos quadrados parciais; Análise 

multivariada; Insetos-praga; Imagens de média resolução. 

 

 

1 INTRODUCTION 

 The bronze bug Thaumastocoris peregrinus Carpintero & Dellapé, 2006 (Hemiptera: 

Thaumastocoridae), exotic species originally from Australia, it became a pest in eucalyptus 

plantations, with an outbreak in several countries (Nadel and Noack 2012; Nadel et al. 2010). 

T. peregrinus was detected in Brazil in 2008 (Wilcken et al. 2010), with large populations,  

with large populations causing damage to eucalyptus plantations, characterized by chlorosis, 

bronzing, drying and leaf fall (Soliman et al. 2012). 

 The attack of T. peregrinus alters the physiological processes of plants, and it is 

possible to identify through satellite images (Transon et al. 2018). The canopy of healthy trees 

have a high absorption of leaf pigments in the red spectral regions and high reflectance in the 

near-infrared and begin to absorb or reflect spectra at different wavelengths when exposed to 

biotic and abiotic stresses (Pinter Jr. et al. 2003; Vygodskaya et al. 1989). High water content 

in healthy trees canopy is usually found when the contrast between the near (NIR) and distant 
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(SWIR) infrared is analyzed, and the reverse pattern occurs for those unhealthy or under 

adverse conditions (Fraser and Latifovic 2005; Vogelmann and Rock 1989). 

 Satellite images allow the detection of different spectral patterns between healthy and 

damaged trees (Santos et al. 2017). These can be used to build maps to monitor attacked areas 

and the dynamics of insect pest infestation over time (Townsend et al. 2012). This information, 

combined with the development of an efficient algorithm, allows decision making on targets 

of interest (Rodríguez-Cuenca et al. 2015), which, in the case of eucalyptus plantations in 

Brazil, add up to thousands of hectares to be monitored. 

 Researches applying indexes to characterize changes in canopy forests (Cohen and 

Goward 2004; De Beurs and Townsend 2008; Zheng and Moskal 2009) are informative but 

resulting in unique values. This modifies the magnitude of the spectral band values  (Singh 

1989), essential for the development and sensitivity of this study. 

 The objective of this study was to evaluate the potential of medium spatial resolution 

multispectral images and partial least squares discriminant analysis to monitor the infestation 

of the bronze bug Thaumastoris peregrinus Carpintero & Dellapé, 2006 (Hemiptera: 

Thaumastocoridae), in eucalyptus plantations. 

 

2 MATERIAL AND METHODS 

2.1 STUDY AREA 

 The study was developed in 170.07 hectares with Eucalyptus urophylla x Eucalyptus 

grandis hybrid clones of 60 months old in the municipalities of Antônio Dias, Ipaba, and 

Periquito, Minas Gerais state, Brazil. The climate, according to the Köppen classification, of 

the municipality of Antônio Dias is Cwb, humid subtropical with dry winter and temperate 

summer, average annual precipitation of 1,489 mm, and average annual temperature of 19.8 

ºC. The climate of the Ipaba and Periquito municipalities is Aw, tropical with dry winter, 

average annual precipitation of 1,344 and 1,290 mm and average annual temperature of 22.3 

and 22.9 ºC, respectively (Alvares et al. 2013) 

 The healthy (54.65ha) and attacked (115.42ha) stands were determined by prior 

monitoring "in loco" to verify the presence or absence of T. peregrinus and its injuries on 

plants. Stands free of insects or injuries were considered healthy and stands with insects, 

chlorosis, bronzing or dry leaves were considered to be attacked. 
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2.2 ACQUISITION AND PRE-PROCESSING OF SATELLITE IMAGES 

 Satellite images of Landsat 5 in the bands 1, 2, 3, 4, and 5 (Table 1) in orbit 217 and 

point 73 with a spatial resolution of 30 m passage of sensor TM (Thematic Mapper) on June 

6, 2010, were acquired at the site of the National Institute for Space Research in 

http://www.dgi.inpe.br/CDSR/. 

 

Table 1. The spectral resolution of the Landsat TM bands to study health Eucalyptus stands or those damaged 

by Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) 

Landsat TM Bands Spectral resolution (micrometers) 

Band 1 - blue 0.45 - 0.52 

Band 2 - green 0.52 - 0.60 

Band 3 - red 0.63 - 0.69 

Band 4 - near infrared 0.77 - 0.90 

Band 5 – short-wave infrared 1.55 - 1.75 

 

 The geometric and radiometric correction of images were performed in two steps. First, 

the digital image numbers were converted to at-satellite radiance through the calibration 

coefficients Brescale (W/m2.sr.μm) and Grescale (W/m2.sr.μm.DN) (Chander et al. 2007) and at-

satellite radiance to at-satellite reflectance by the apparent reflectance method (ρλ) (Chander 

et al. 2009), by the equation: ρλ = π Lλ d
2/ ESUNλ cos(θ); where: Lλ is the apparent binomial 

radiance (W/m2.sr.μm); d sun-earth distance in astronomical units; ESUNλ exoatmospheric 

average solar radiance (W/m2.μm); and the θ solar zenith angle. 

 The images also passed by topographic correction using the C-correction approach 

(Teillet et al. 1982) with a terrain elevation image (19S435ZN); acquired at the site of INPE 

TOPODATA in http://www.dsr.inpe.br/topodata/; by the equation: ρH = ρT (cos(θz)+c/IL+c); 

where: ρH is the radiance observed in the horizontal surface; ρT  the radiance observed on the 

surface with relief; θz the solar zenith angle; IL solar angle on a surface with relief; and c= 

b/m, where m and b regression coefficients specific for each band. 

The images at the end of the pre-processing step were cropped based on the contour of 

the stands to obtain the new images canopy reflectance of eucalyptus trees for each of the 

spectral bands. The corrections and processing were performed using the R program (R Core 

Team, 2010) with the raster (Hijmans 2014), rgdal (Bivand et al. 2014), splancs (Rowlingson 

and Diggle 2013), landsat (Goslee 2011) and shapefiles (Stabler 2013) packages. 
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2.3 SPECTRAL CHARACTERIZATION OF T. PEREGRINUS 

 The targets of this study had 88 pixels to the smallest area of 7.95 ha to 567 pixels for 

the largest one with 51.03 ha on satellite images. Seventy random pixels per band were chosen 

for a non-unbalanced analysis of the data. The canopy reflectance values of each spectral band 

were analyzed with Permutational Multivariate Analysis of Variance (PERMANOVA) 

(Anderson 2001) with Mahalanobis distance (Perumal and Bhaskaran 2010) to reduce the bias 

of the analysis, with a significance level of p<0.05 and 9,999 replications. This analysis was 

conducted to verify differences in the bands between healthy and damaged areas. Analyses 

were performed using the R software (R Core Team 2010) and the vegan package (Oksanen 

et al. 2015). 

 

2.4 PREDICTION AND MAPPING T. PEREGRINUS 

 The partial least squares discriminant analysis (PLS-DA), a special case of regression 

by partial least squares (PLSR) for categorical variables (Pérez-Enciso and Tenenhaus 2003) 

was used to predict the areas damaged by T. peregrinus. Five multispectral bands were 

subjected to PLS-DA regression, where the collinearity effect of the model data can be reduced 

more effectively, and the correlation between the variables of predictor spectral band and 

variable response maximized (Mevik and Cederkvist 2004). The partial least squares 

regression is described by the equation, X= TP’ + E, Y= UQ’ + F, where X is the predictor 

matrix; Y is the response matrix; T-scores= X; U= Y-scores; P= X-loadings; Q= Y-loadings; E= 

X-residuals; and F= Y-residuals (Geladi and Kowalski 1986; Ye et al. 2008). 

 The number of main components was selected according to the classification error rate 

as predicted by the cross-validation process by leave-one-out to minimize PLS-DA errors in 

the regression fitted (Mevik and Wehrens 2007). The predictor variables included in the 

regression PLS-DA, were chosen with the calculation of the important variables in the 

projection (VIP) (Tenenhaus 1998). These variables determine the contribution of each band 

in the data set and identifies those most important to predict areas damaged by T. peregrinus. 

The  PLS-DA regression adjustment and calibration were performed in 102.21 ha attacked and 

46.7 ha healthy, and the prediction in 13.21 ha attacked and 7.95 ha healthy ones to validate 

the data set model. 

 The infestation by T. peregrinus was mapped with the result of predicting pixel by 

pixel with the PLS-DA regression adjusted on the validation areas. The areas were mapped 

with the following classes: red for damage and gray for health areas in the interior of stands. 
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The accuracy of the maps was obtained by the simple ratio between the number of pixels 

correctly classified and the total pixels per area. Analyses were performed using the R software 

(R Core Team 2010) and mixOmics (Dejean et al. 2013) and raster (Hijmans 2014) packages. 

 

3  RESULTS  

 The spectral bands of damaged and healthy areas showed differences with the 

Permutational Multivariate Analysis of Variance using Mahalanobis distance (pseudo-F= 

50.489, p= 0.00001, DF= 1, n= 559) (Figure 1). 

 The Partial Least Square Discriminant Analysis (PLS-DA) adjusted had an error rate 

of cross-validation with three main components of 0.245. The differences in the accuracy of 

the adjusted models were higher with 1 and 2 main components, respectively, 0.305 and 0.285 

(Figure 2a). Errors showed lower variation from three components (Figure 2a). The 

determination of the most important predictor bands to identify healthy and damaged areas by 

T. peregrinus with the selection of variables important in the projection (VIP) is the next step 

after defining the number of main components of the model. VIP  showed that three major 

bands in the model are respectively the band 4 (near-infrared) (VIP= 1.12465), band 1 (blue) 

(VIP= 1.05784) and band 3 (red) (VIP = 1.02895) (Figure 2b). 

 The areas damaged by T. peregrinus showed more multidimensional variation for the 

most important bands to select areas with healthy eucalyptus plantations (Figure 3). This 

variation can be inferred that the probability of error of the PLS-DA regression is higher when 

predicting healthy areas as damaged by this pest than the inverse. 



Brazilian Journal of Development 
 

   Braz. J. of  Develop., Curitiba, v. 6, n.4,p17947-17960  apr. 2020.    ISSN 2525-8761 

 
 

17953  

 

Figure 1. The reflectance of the bands 1, 2, 3, 4, and 5 of the Landsat 5 TM in healthy and attacked areas by 

Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae). 

 

 

Figure 2. Classification of the cross-validation error rate (a) and variables important in the projection (VIP) (b) 

for adjustment of the regression with partial least squares discriminant analysis (PLS-DA). 
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Figure 3. Scatter plot with confidence ellipse (95%) of the regression discriminant analysis partial least squares 

(PLS-DA) to separated healthy from damaged areas by Thaumastocoris peregrinus  (Hemiptera: 

Thaumastocoridae) using bands 4, 1 and 3. 

 

 The fitted PLS-DA regression allowed predicting pixel to pixel, in order to map the 

status of two plant stands, not utilized in the adjustment and calibration stages, respectively, 

as damaged (Figure 4a) and healthy (Figure 4b). The mapping accuracy was 97.7% (100* (211 

pixels correctly classified/216 pixels in the areas), showing a highly satisfactory approach to 

classify areas damaged or not by T. peregrinus. 

 

Figure 4. Mapping estimated by discriminant analysis by partial least squares (PLS-DA) for a target 13,21ha 

damaged by Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) (A) and healthy (B) with 7.95 ha 

combining the spectral bands 5, 4 and 3 Landsat 5 TM (false color). 
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4 DISCUSSION 

 The characterization of the spectral signature of 60 months old plants with damage by 

T. peregrinus shows variations along the spectrum which corroborate changes in their 

morphology (external and internal) and biochemical responses as observed for those of 

Eucalyptus smithii with this insect (Oumar and Mutanga 2012). The analysis of the reflectance 

curves for the healthy and attacked stands allowed for the spectral characterization of T. 

peregrinus damage across the Landsat OLI bands in 5-year-old forest stands of Eucalyptus 

urophylla x Eucalyptus grandis hybrid clones (Santos et al. 2017). This shows that the use of 

medium spatial resolution images can be used to monitor the attack of T. peregrinus in 

eucalyptus plantations. Difference between bands 1 (blue) and 2 (green) of healthy and 

damaged plantations could not be explained by the relationship between the visible spectrum 

and the concentration of photosynthetic pigments, as carotenoids and xanthophylls, which vary 

with the health status of the vegetation (Rock et al. 1986; Peñuelas and Filella 1998). 

Differences in the average reflectance of the infrared spectrum (band 5) show a change in 

water and other compounds absorption in the canopy of healthy or damaged plants by T. 

peregrinus (Peñuelas and Filella 1998; Santos et al. 2017). The band 5 (0.85–0.88 μm) showed 

higher reflectance in attacked stands as compared to healthy stands (Santos et al. 2017), and 

in this study, the inverse was observed. The plant physiology showed a peak in band 4 for 

healthy areas, in the length of 760 to 900 nm, indicating a higher water content in plant leaf 

tissues in those areas compared to the damaged ones (Rock et al. 1986). However, in 

monitoring the attack of T. peregrinus in eucalyptus plantations, the highest peak in band 4 

was observed for the attacked areas (Santos et al. 2017). The band 3 of damaged areas showed 

higher reflectance, indicating lower concentration chlorophyll in leaves of damaged than in 

healthy ones (Horler et al. 1980; Filella and Peñuelas 1994; Santos et al. 2017).  

 The errors showed less variation with three main components, and similar results were 

obtained by Santos et al. 2017, who also found the smallest cross-validation error for the PLS-

DA model with three main components in a study of T. peregrinus attack in eucalyptus 

plantations. The selection of bands 3 and 4 as important variables in projection (VIP) for 

predicting the phytosanitary status of areas damaged or not by T. peregrinus corroborates 

result with the WorldView-2 satellite images for Eucalyptus smithii, except for band 1, 

included in this work as a variable to identify plants with damage by this Hemiptera as reported 

for Oumar et al. 2013. However, Landsat OLI bands 2 (blue), 3 (green), and 6 (short-wave 
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infrared) were selected as important variables by VIP for the prediction of T. peregrinus 

attacked stands (Santos et al. 2017). 

 The of 97.7% accuracy of the mapping presented in this paper supports the use of the 

combination of multispectral sensors, like Landsat, and Partial Least Squares Regression 

(PLSR) as a robust approach for predicting damage by T. peregrinus as reported for the use of 

hyperspectral sensors in South Africa eucalyptus plantations (Oumar et al. 2013), and for the 

use of Lansat OLI images for predicting damage by T. peregrinus in eucalyptus plantation in 

Brazil (Santos et al. 2017). The sensor Thematic Mapper (TM) Landsat identified insect 

infestations, as Adelges tsugae Annand, 1924 (Hemiptera: Adelgidae) in Tsuga Canadensis 

(Pinaceae) (Bonneau et al. 1999) and defoliation by Choristoneura pinus Freeman, 1953 

(Lepidoptera: Tortricidae) in Pinus banksiana (Pinaceae) (Radeloff et al. 1999). The high 

percentage of correct classification with Landsat 5 images, has the disadvantage 

discontinuation of imaging by this satellite in South America. On the other hand, other 

satellites, like the Landsat 8 and Sentinel, have similar features and enhancements and could 

be used with the approach proposed in this research. 

 The spectral response of the areas damaged by T. peregrinus as a result of an average 

spectrum of 90 trees per pixel (30x30 m), with 3.33x3.00 m plant spacing. However, the 

infestation which allows detection by the method proposed is not also known, because it was 

thoroughly examined only in healthy crops and those completely damaged by T. peregrinus. 

Satellites with better spatial and temporal resolution as the WorldView-2, respectively 2 x 2m 

in multispectral bands and 1.1 days for new imaging, have a higher sensitivity to predicting 

and mapping T. peregrinus (Oumar and Mutanga 2012). However, the Landsat images are 

free, while the WorldView-2 has a high cost. 

 Remote sensing combined with an unsupervised classification algorithm allows, at the 

appropriate time, monitoring and mapping of attacks by T. peregrinus in eucalyptus 

plantations (Ennouri and Kallel 2019).  

 

5  CONCLUSION  

 The multispectral signature damage by the bronzing bug T. peregrinus was 

characterized. The approach using discriminant analysis by partial least squares showed the 

potential to develop an algorithm for remote sensing monitoring of medium resolution of this 

Hemiptera insect in eucalyptus plantations. 
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