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ABSTRACT 

Dynamic resource allocation has a significant impact on the performance of MPSoCs 

(Multiprocessors System-on-Chip) based on Networks-on-Chip (NoCs). In this work, we 

propose the IPNoSys III, an NoC using Software Defined Networks (SDN) paradigm 

applied to IPNoSys, a parallel non-conventional architecture. IPNoSys III has a 2D mesh 

topology, that contains in each node four processing cores, connected to a memory and 

that run packages in the IPNoSys format, and a communication unit. An SDN controller, 

connected to all nodes, manages the network and has an overview of the network to 

execute the routing algorithm and to map tasks according to the performance objectives. 

The results show up to 17% better performance in clock cycles to the SDN controller than 

a static solution and up to 46% better when comparing IPNoSys III to a conventional 

NoC. 

 

Keywords: IPNoSys, NoC, MPSoCs, SDNoCs. 

 

RESUMO 

A alocação dinâmica de recursos tem um impacto significativo no desempenho de 

MPSoCs (Multiprocessors System-on-Chip) baseados em Networks-on-Chip (NoCs). 

Neste trabalho, propomos o IPNoSys III, uma NoC que utiliza o paradigma de Redes 

Definidas por Software (SDN) aplicado a IPNoSys, uma arquitetura paralela não 

convencional. A IPNoSys III possui uma topologia de malha 2D, que contém em cada nó 

quatro núcleos de processamento, que possuem acesso à memória e executam pacotes no 
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formato IPNoSys, e uma unidade de comunicação. Um controlador SDN, conectado a 

todos os nós, tem uma visão geral e gerencia a rede para executar o algoritmo de 

roteamento e mapear tarefas de acordo com os objetivos de desempenho. Os resultados 

mostram um desempenho até 17% melhor em ciclos de clock para a IPNoSys III com o 

controlador SDN do que com uma solução estática e até 46% melhor quando se compara 

o IPNoSys III a uma NoC convencional. 

 

Palavras-chave: IPNoSys, NoC, MPSoCs, SDNoCs. 

 

 

1 INTRODUCTION 

Communicating processing cores within MPSoCs is one of the challenges faced 

by designers. Networks-on-chip (NoCs) integrates high scalability with the possibility of 

transmitting messages in parallel [1], [2]. With the constant miniaturization of 

components and the scalability provided by NoCs, MPSoCs appear as state-of-the-art 

parallel architectures, with chips with dozens or even hundreds of processing cores [3][4]. 

With many processing elements running different applications, the need to allocate tasks 

to use the infrastructure better becomes essential to obtain better performance, 

considering the execution time and energy consumption. In [5], the authors affirm that 

the complexity in allocating tasks is exponentially proportional to the number of tasks 

and processing elements available. According to the same authors, poor management of 

these resources can impair performance and energy consumption by a few tens of 

magnitude. Thus, MPSoCs need to provide intelligent control of communication and 

computing infrastructure. This approach allows the architecture to dynamically adapt to 

the applications, according to the expected objectives (better performance, lower energy 

consumption, temperature, etc.), with the minimum possible loss in quality-of-service 

(QoS) [6]. 

Conventional computer networks also aim to provide efficient communication 

between the interconnected components and dynamically adjust to the applications' 

different scenarios, finding the best route for package transmission, traffic balancing, and 

adaptation in case of the failed link, etc. State-of-the-art works converge towards using 

the software-defined networking (SDN) paradigm [7]. The concept of SDNs is the 

separation of control and data layers, that allows the network to overview all nodes and 

efficiently manage resources [8].  The solutions presented by the SDNs are executed by 

software, which directly impacts the network's performance because the controller 

analyzes the packages frequently at run time. However, the better management of the 
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network compensates for the loss of performance, which can be up to 20% more efficient 

in some cases when compared to networks without SDN [9]. 

Computer networks were the inspiration of the NoCs. New technologies 

introduced in networks were also adapted and brought to NoCs, such as wireless routers 

[10]. Some works such as those by [11] and [12] introduce the SDN paradigm in NoCs. 

The architectures derived from this paradigm were named SDNoC (software-defined 

network-on-chip). 

The justification for adopting SDN in NoCs is making the architectures support 

future applications, adapting to the conditions to get better performance [13]. As all 

management is under a software solution, network management can be updated at runtime 

and adapts to the applications. With centralized control, routers have their complexity 

reduced to just forward packages [14]. Although the studies show promising results, some 

are reaffirming the same conclusions observed in the statistics of conventional SDN 

networks': the performance improvement is more significant than the losses caused by the 

software solution. 

Integrated Processing NoC System (IPNoSys) is a new model of NoC presented 

in [15]. This architecture brought a new component that joined processors and routers in 

a single element called RPU (Processing and Routing Unit). This architecture has a high 

processing power compared to a conventional MPSoC, mainly in processing applications 

with high parallelization capacity. The number of published works shows that IPNoSys 

architecture is gaining prominence in the academic environment. Due to its unique 

execution model and differentiated architectural components, it is possible to create 

variations of the architecture to adapt to new scenarios. As an MPSoC, IPNoSys presents 

a good platform for a parallel single application, including more parallelism was archived 

with IPNoSys II [16] Thus, in this paper, we propose a new version of this architecture 

(IPNoSys III) through the SDN paradigm, which allows the execution of many 

applications keeping high performance and balance control of the entire network. 

 

2   RELATED WORKS 

2.1 SDNOCS 

 Works that directly deal with SDNoCs are quite recent, with the first work 

published in 2014 by [17]. The presented architecture differs from conventional NoCs 

with the separation between data and control. 
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 In [12] were the first to deal directly with resource management in SDNoC, which 

describes a task mapping algorithm that runs on routers. Like other purposes, this SDNoC 

implements the data and control layers via software, over the infrastructure (physical) 

layer. In this architecture, the tests carried out in a simulation tool described in SystemC 

with the network's size varying among 4x4, 5x5 and 6x6. The benchmark was the 

applications H.263 and MP3 multimedia encoder and decoder. They compared the 

proposed dynamic mapping with two other strategies: a genetic algorithm and a heuristic. 

The results showed that SDNoC achieves a better performance with the application's 

execution time and has a lower mapping cost than the others. However, the SDNoC router 

has a larger area and power consumption than a conventional router. 

 In [13], a manycore with a physical topology composed of a 2D mesh, but through 

software configuration, a dynamic virtual topology mapped node adapts to the 

application. The logical topology is configured based on the application at the beginning 

of execution. The authors presented an example of the network being reconfigured for a 

ring topology in which 37.5% of the links are disconnected, saving energy. Each router 

has a memory that maintains a routing table. The special instructions added to the ISA 

(Instruction Set Architecture) do the configuration. To assess performance, they compare 

the SDNoC to a conventional NoC with mesh topology. Both were executed with a 

random traffic pattern and varying the network's size between 16 and 1024 PEs 

(Processing Elements). The results showed that latency in conventional NoC increases at 

a higher rate than in SDNoC. For 1024 PEs, the latency in conventional NoC is almost 

double for SDNoC (425 and 220 cycles, respectively). Also, SDNoC latency increases at 

a more linear rate, proving its better scalability. The paper does not compare area and 

power with other architectures.  

In addition to communication management, the software control can also provide 

other resources in an NoC as in [18], when it uses to provide security in the 

communication among cores of the same MPSoC. The authors argue that the SDN 

paradigm was adopted because the amount of memory needed to store the routing tables 

grows exponentially as the NoC increases. Using SDN, the switches are now managed by 

the controller, reducing the amount of memory required. 

 

2.2 IPNOSYS 

 IPNoSys was created after the observation that data transmission between the 

source and the destination routers, in a conventional NoC, only access the package header 
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to perform the routing. The idea is to take advantage of the package's transmission time 

by carrying out to process of a program's instructions during the path between the origin 

and the destination [19]. IPNoSys consists of an interconnection network in the 2D grid 

format of NxN nodes, XY routing, distributed arbitration, storage at the entrance, credit-

based flow control, at least two virtual channels, VCT, and wormhole switching [15]. The 

RPU (Routing and Processing Unit) replaces the router-processor sets of conventional 

NoCs and the Memory Access Unit (MAU) handler the memory access.  

The execution in IPNoSys happens by injecting packages in the four corners of 

the network through the MAUs. Each package consists of 36-bit words, the four most 

significant bits define the type of the word and the other 32 bits carry the actual 

information. The words can be of four different types: header, instruction, operand, and 

end-of-package. Each package has header words, a sequence of instructions and operands, 

and an end-of-package word.  

The header words indicate the package's properties, such as origin and destination 

of the package, number of instructions, type of package, and program to which it belongs. 

The instruction word contains the OPCODE of the instruction to be executed and the 

addresses for inserting the operation results. The operand word uses all bits to indicate a 

value or a memory address, depending on the instruction. The end-of-package word does 

not carry useful information, only indicating the end of the package. Regular packages 

carry instructions to be executed within the network by RPUs. Regular packages generate 

control packages with specific instructions that must be executed by the MAUs.  

The IPNoSys assembly language is called Package Description Language (PDL), 

which includes information about each package, how they are related among them in a 

program, the conventional programs instructions, furthermore, synchronization 

instructions to parallelization. Each program can have one or more packages stored in the 

memories located in the four corners of the network and inserted into the network word 

by word by the MAUs. As the package enters the network, each RPU in its path executes 

at least one instruction from the package, removes it, and reinserts the result in the 

locations indicated by the instruction word. The number of instructions to be executed by 

each RPU is indicated in the package header and after execution, the rest of the package 

is transmitted to the following RPUs. Figure 1 details this process. 
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Figure 1 - IPNoSys Execution Model 

 

Source: [20] 

 

In Figure 1a, the words 0, 1, and 2 are the header. Words 3 and 4 are the COPY 

instruction and its operand. Words 5 to 14 are the rest of the instruction and the terminate 

word in the package. According to the example, the COPY instruction is executing, with 

the result of the operation going to addresses 7 and 10 of the packages (Figure 1b). After 

execution, the RPU transmits the rest of the package to the next RPU. This process repeats 

until all instructions within the package execute. The best IPNoSyS performance is 

achieved through thread-level parallelism. Thus, an application can be built using 

packages such as threads that are injected in parallel by the four MAUs. 

In [16] the authors developed IPNoSys II, a new architecture that inherits 

characteristics of IPNoSys. The new architecture maintains the execution model through 

new components created from the original RPU and MAU modifications. Figure 2 shows 

the basic architecture diagram. 

 

Figure 2 - IPNoSys II 

 
Source: [16] 
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In the IPNoSys II, the network of RPUs of the version I is replaced by a Packet 

Processing Unit (PPU), which can execute an entire package without the need to transmit 

it, thus improving more yet the performance. An IPNoSys II containing four PPUs, linked 

by CSU (Communication and Synchronization Unit), is equivalent to the version I to 

execute for parallel threads. The experimental results showed the version II speed up to 

5.9 times compared to version I and up to 19.1 times compared to NoC-based MPSoC 

[16]. Furthermore, the connection among several CSUs is perfectly possible to increase 

the parallelism and consequently performance.  

The PPU works as a "mini" IPNoSys. It can read packages in memory, decode 

and execute all instructions, send instructions to be executed on remote PPUs (via CSU), 

and execute instructions sent by remote PPUs. It can also send the processing result back 

to the PPU that requested execution in the latter case. 

In [21], the author analyzes the feasibility of using PPUs as processing elements 

in MPSoCs and shows a theoretical analysis of performance. The author designed an 

architecture with square mesh NoC (Figure 3a), in which each node has 4 PPUs and a 

communication element called LWHO (Figure 3b), similar to CSU of IPNoSys II. A 

central component, called WHO controls communication between network nodes.  

 

Figure 3 - NoC IPNoSys 

 

Source: [21] 

 

The WHO component allocates tasks in the nodes, creating clusters that execute 

the applications. The WHO connects only to the corner nodes. All communication 

between the WHO and other nodes must be retransmitted between the intermediate nodes. 

Static algorithms that create a cluster for each application manages the NoC. At first, only 

one node forms each cluster, but it can be added more nodes according to the application's 
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need to instantiate more tasks until there are no more nodes available. LWHO manages 

the execution of applications within the cluster, providing communication between PPUs 

and defining which PPU executes each task. All management is done statically, through 

tables that store the location of tasks in each PPU. 

The architecture was simulated in high-level software, to ascertain to validate the 

allocation task algorithm. Specific characteristics inherent to IPNoSys and other NoCs 

were abstracted, such as the communication cost and the number of cycles for executing 

each instruction. The results showed that the architecture scales well even in scenarios 

where many requests for allocating and deallocating nodes to the clusters. 

The new architecture proposed by this paper is called IPNosys III, it expands [21], 

changing some architecture properties and adding the SDN paradigm to the allocation of 

tasks.  

 

3 IPNOSYS III 

The work of [21] shows the feasibility of an NoC using IPNoSys II processing 

elements. The study was done analytically and showed positive results. Thus, in this 

paper, we expanded this idea and will present a SystemC RTL implementation with a 

network central controller with SDN characteristics, it is the IPNoSys III. 

 

3.1 OVERVIEW 

 IPNoSys III is an NoC with a 2D mesh topology, where each node has a 

processing element like IPNoSys II, with four PPUs and one CSU, performing up to four 

concurrent threads. Figure 4 shows the simplified scheme of the proposed architecture. 

The CSU manages the communication between the PPUs inside the node without the 

network controller's intervention, while the controller manages the communication 

between nodes. 
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Figure 4 - IPNoSys III 

 

 

The proposed architecture uses SDN (Software-Defined Networking) concepts, 

adding a controller element that communicates with the nodes through its own protocol. 

The controller has an overview of the entire network, creates clusters for applications, 

indicates on which node should instantiate each task and calculate the routes to tasks 

communications. 

Each PPU has a physical memory that forms a unique address space, equally 

shared for the entire architecture. For each memory module, an associated MAU is in 

charge of injecting the packages and executing instructions that read or write data in 

memory. 

Like the previous version, the IPNoSys III uses the original IPNoSys ISA, so the 

programs run in previous versions are compatible with our proposal, thus maintaining the 

idea of the IPNoSys processor family. We add only a new control package, with a slightly 

different format, which carries out communication between the controller and the network 

components. 

 

3.2 PPU, CSU, AND CONTROLLER 

 In IPNoSys III we change the interface of PPU to the CSU through RPU instead 

of MAU, as the previous one, as seen in Figure 5. 
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Figure 5 - IPNoSys II PPU vs IPNoSys III PPU 

 

(a) 

 

(b) 

 

 The choice for changing the internal organization of the PPU is because RPU 

executes control instructions used for communication between nodes, decreasing the 

number of jumps to reach the destinations. Only read and write memory instructions need 

to go through the MAU. 

 The CSU (Communication and Synchronization Unit) of IPNoSys III, in addition 

to connecting a node's PPUs, also is connected to the network manager and with the 

neighboring nodes' CSUs. It consists of two switches, one local (SL), which interconnects 

all PPU ports, and one global (SG), which connects the SL with the network controller 

and neighboring nodes, as shown in Figure 6.  

 

Figure 6 - IPNoSys III Comunication and Sinchronization Unit 

 

 

 The SL works by connecting the PPUs and the SG via a crossbar, implementing 

the Round-Robin algorithm to attend to requests of each port. The network controller 
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executes the routing algorithm and CSUs only store the routes, characterizing the SDN 

paradigm.  

 According to the SDN paradigm, software that usually runs on one node manages 

the network. This component can have an overview of the status of all nodes and act to 

maximize performance according to the conditions pre-established by the programmer. 

Although this is the standard adopted by the architectures, there are no defined rules or 

official norms for implementing an SDNoC. As long as some features are implemented, 

such as the control being done at a high level by some element with an overview of the 

network, this architecture can be referred to as having SDN characteristics. 

Unlike other SDNoCs, IPNoSys III's designed a control to be independent of the 

network, executing the control software in a separate processor. An interface (wrapper) 

was implemented, with a communication protocol to connect a network with an ASIC or 

any other processor such as an ARM, MIPS, SPARC, etc., which will run the control 

software.  

The interface is an arbiter connected to all CSU of the nodes. Each link has a 

buffer that stores the packages from the CSUs towards the controller and vice versa. The 

arbiter uses the Round-Robin algorithm to select one of the requested buffers and transmit 

the package to a wrapper. Figure 7 shows a summary diagram of the controller 

components for a network with four nodes. 

 

Figure 7 - Diagram of the Controller 

 

 

The wrapper converts the messages exchanged between the network and the 

control software between digital signals and high-level data and stores the data in memory 

to the software can access them. The data arriving at the wrapper over the network are 

digital signals made up of words (or packages) from IPNoSys. It extracts the instruction, 
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program and package IDs and the operands (if exists) present in the control packages (or 

signals) and the node to send to the control software can access them.  

 

3.3 EXECUTION MODEL 

 The IPNoSys programming model divides programs into regular packages that 

correspond to threads and control packages that correspond communications among 

network components. In previous versions of IPNoSys, the package traveled between the 

RPUs and needed to carry some information for the correct communication and 

processing of its instructions, for example, origin, destination, and which the RPU will 

execute the instruction. This information was divided into ten fields distributed in three 

words and formed a header. For IPNoSys III, most of these fields are irrelevant and the 

three header words could be replaced by just one with four fields: program ID (8 bits), 

package ID (14 bits), number of instructions (8 bits), and type (2 bits). The simulator 

loads the program into memory in the traditional way, as translated by the assembler, with 

the three header words and the MAU of IPNoSys III changes the headers when reading 

and injecting each package on the network. This makes it possible for IPNoSys Original 

programs to run with compatibility. 

As in the previous format, the Program ID field identifies which program belongs 

to, and the Package ID field identifies that package within the program. The Program ID 

and Package ID tuple is unique (among regular packages), and it is through it that the 

controller can manage communication. The control packages generated from the regular 

packages contain the same IDs as the regular packages that instantiated them.  

 We define a protocol to operationalize the communication between the network 

components and the controller, consisting of new control instructions. The nine new 

instructions, called SDN instructions and listed in Table 1. Of the nine instructions, eight 

are transparent to the programmer and are created directly by the PPUs, CSUs or 

controller. 
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Table 1 - SDN Instructions 

Instructions Source Destination Function 

SDN_START PPU Controller The instruction used to configure the 

environment. 

SDN_INIT PPU Controller PPU tells the controller the start of the 

execution of a package. 

SDN_END PPU Controller PPU informs the controller that it has 

finished executing a package. 

SDN_REQ CSU Controller CSU has all PPUs occupied and requires 

the controller to address a node to 

instantiate another task. 

SDN_RESP Controller CSU Controller answer CSU with the address 

of a new node to instantiate a new task. 

SDN_SEND CSU Controller CSU requests a route to communicate with 

another node. 

SDN_RT Controller CSU Controller answer CSU which port send 

the package. 

SDN_INT Controller CSU and 

PPU 

Controller requests interruption of 

package processing and transfer to another 

node. 

SDN_STOP PPU Controller PPU informs the controller of the 

execution of the last program package. 

 

 The first instruction, SDN_START, is the only one that can be optionally created 

explicitly by the programmer. The programmer uses it to define how the network runs the 

application, limiting cluster size, or if it should use all nodes in the cluster. This 

instruction, if used, must always appear in the first package of the application. In the case 

of running programs of old versions of IPNoSys or if the programmer omits this 

instruction, the controller uses the default configuration, not limiting the cluster size or 

the use of the nodes. 

 The remaining instructions are used only by the network components (CSU, PPU, 

Controller). Because they have very specific functionalities, some of these instructions 

are converted into signals, carrying all the necessary information in just one word, 

reducing the network traffic. The PPU creates and sends instructions SDN_INIT e 
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SDN_END to inform when each package's start and finish execution on it. The controller 

uses these information to know where each package is executing. If a new task needs to 

be instantiated, the CSU can allocate it in an idle PPU. If there's no idle PPU inside the 

node, CSU uses SDN_REQ to ask the controller to allocate a new node. The controller 

sends an SDN_RESP with the new node address. If tasks inside the same node need to 

communicate, the CSU can transmit control packages between them. But if they both are 

in different nodes, the CSU sends the controller a SDN_SEND signal, and the controller 

answers with a SDN_RT signal with the port to route the message. At least, when the 

PPU finishes the execution of the application's last package, it sends a SDN_STOP signal 

to update the controller about the finish of execution. 

The beginning of an application's execution always starts at one node closest to 

the center of the network, as there is a greater density of nodes in this region, allowing 

the tasks that are more to be closer to each other. The first instruction executed by the 

network is SDN_START to configure the controller with the parameters defined by the 

programmer. The next instantiated tasks will always be allocated within their respective 

cluster by the controller. 

As an example, we can imagine a scenario of running two applications. In the first 

one, the programmer defines, by the SDN_START instruction, that his application could 

run in a cluster containing four nodes. In the second application, the programmer did not 

define any parameters and the network configure it automatically. The first application 

starts to run on one of the central nodes and the controller defines a cluster containing 

four nodes in which all the tasks for that application will instantiate. In the second 

application, the controller, as there was no initial parameter, uses all available resources 

and instantiates the first task on the most central node available in this cluster. Figure 1 

shows this example.  
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Figure 8 - Example of a Cluster with Two Applications 

 

 

 We implement the control software using the Floyd-Warshall algorithm to 

calculate the network's central nodes, the closest available node (to allocate new tasks), 

and the shortest path between the source and the destination (when two nodes need to 

communicate). The Floyd-Warshall algorithm has a complexity of O(n³). The algorithm 

can be replaced by a more efficient one when necessary since the control executes in a 

software solution. 

 

4 RESULTS 

 To validate the proposed architecture, we describe a simulator for the network in 

SystemC RTL with cycle precision. We made a high-level abstraction for the controller 

that makes it possible to connect the control software to the network, so requests need 

one clock cycle. The simulated scenarios aim to evaluate the impact of using the central 

controller in conjunction with the network and compare the proposed architecture with a 

conventional NoC. 

 

4.1 EXPERIMENTS SETUP 

 In the first experiment, we evaluate the impact of the network communication with 

the controller. To make this experiment possible, we created a modified version of 

IPNoSys III without a controller, so that it was possible to use the IPNoSys II packages, 

with three header words that carry the source and destination information. The IPNoSys 

III without controller needs the programmer to manually inform which node processes 

each package as a compilation-time mapping, and it is possible to CSU use XY routing 

algorithm to communicate with other nodes. We simulate both NoCs (the IPNoSys III 



Brazilian Journal of Development 
ISSN: 2525-8761 

2336 

 

 

Brazilian Journal of Development, Curitiba, v.7, n.1, p. 2321-2341  jan. 2021 

 

and IPNoSys III without a controller) using synthetic applications with logical and 

arithmetic instructions. We use two synthetics benchmarks: an application with a few 

packages and many instructions and an application with many packages and a few 

instructions. The network's size was varied (4x4, 5x5, and 6x6), adding more nodes to 

instantiate more tasks. The metrics evaluated was the execution time in number of clock 

cycles. 

The second simulated scenario was the performance evaluation of IPNoSys III 

running real applications. As a benchmark, we use a matrix multiplication algorithm and 

the DCT-2D algorithm. We use the MPSoCBench framework [22] to generate four NoCs 

integrated with some ISA simulators available on the market: ARM, MIPS, SPARC, and 

PowerPC and compare the execution times (in clock cycles) to the IPNoSys III. 

 

4.2 EXPERIMENTS RESULTS 

 The first scenario evaluated was the impact of network communication with the 

controller. Figure 9 shows the comparison between IPNoSys III connected to the 

controller vs. IPNoSys III with manual mapping done by the programmer, running an 

application with few tasks and many logical and arithmetic instructions. It is possible to 

notice that the impact of communication between the network and the controller remains 

constant, between 4,16%, 4,32%, and 4,40%, even when the network's size varies. 

Because of the small number of packages, the controller has little influence on the 

execution, setting the communication cost close to the cost of using extra words in the 

header of each package. 

 

Figure 9 - Comparison of the Application with Few Tasks and Many Instructions 

 

Figure 10 presents a setup similar to the previous one, but with both architectures 

running an application with many packages (tasks) and that each package has few 

instructions. In all simulations, it is possible to notice that the compilation-time mapping 

was more efficient than at runtime mapping, using the controller, varying between 4,34%, 
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7,98%, and 16,93%. Since there is no communication between tasks, there is no benefit 

in adding the controller. Moreover, with more tasks to be instantiated, the controller 

becomes the network bottleneck. 

 

Figure 10 - Comparison of the Application with Many Tasks and Few Instructions 

 

In the before simulations, the controller acts only to instantiate a new task in a 

new node. In the next simulation for this scenario, we evaluate the IPNoSys III 

performance when the application tasks communicate. We use the application with many 

tasks and a few instructions and add some new instructions in each package to send results 

to different tasks, in order to generates more traffic in the network. The results in Figure 

11 shows that IPNoSys III without a controller needs 16,96%, 9,87%, and 6,17% more 

clock cycles compared to version with controller. In this experiment, we notice a better 

performance of IPNoSys III with the SDN controller. It happens because the controller 

acts to find a better route to communicate nodes, despite IPNoSys without controller use 

XY routing algorithm. The difference decreases when the number of nodes increases 

because more nodes send a request to the controller, and it becomes the bottleneck. 

  

Figure 11 - Comparison the Application with Many Tasks and Few Instructions with Communication 

 

 The Figure 12 shows a graph with the number of transmitted words of each link 

in a IPNoSys 4x4 for the before simulation. The black dots in the ‘x’ and ‘z’ axis 
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represents the networks nodes, and the ‘y’ axis represents the number of transmitted 

words of each link. In IPNoSys III with controller, each package has less words, and the 

controller spreads the communication in the network, how we can see in Figure 12a. The 

IPNoSys III without controller, has more words in each package and the number total of 

transmitted words is 10,51% more than the IPNoSys III with controller and the 

communication stay concentrated in the center of the network, causing congestion in these 

nodes.  

 

Figure 12 - Transmitted words in a IPNoSys 4x4 with controller (a) and without controller (b) 

(a) (b) 

 

The second scenario evaluated was the behavior of IPNoSys running real 

applications and comparing them with other NoC. We execute two applications that can 

run in parallel to obtain the maximum performance of the NoCs. The first application was 

the multiplication of matrices. We write the applications in PDL’s language to run in 

IPNoSys III and implement the same in C language to execute in the ARM, MIPS, 

SPARC, and PowerPC simulators. All architectures run at a frequency of 50MHz. 

According to Figure 13, it is possible to notice that IPNoSys III has a clock cycle 

performance better than all other simulated architectures, being approximately 10,47% 

faster than NoC ARM and almost 45,81% faster than NoC MIPS.  
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Figure 13 - Execution of Matrix Multiplication 

 

 The next application is the DCT-2D algorithm on a 256x256 pixel image. The 

setup used is the same as the previous test. Figure 14 shows the results in clock cycles for 

all simulations. In this case, IPNoSys III shows results closer to other architectures, being 

approximately 2,28% faster than NoC ARM and 42,26% faster than NoC MIPS. 

 

Figure 14 - Execution of DCT-2D 

 

 

5 CONCLUSION AND FUTURE WORK 

 This work shows it is possible to join the SDN paradigm and the execution model 

of IPNoSys, a non-conventional architecture, to obtain a performance increase in parallel 

applications' execution. The results show a similar performance between the version with 

the static approach when there is little traffic in the network and better performance when 

the traffic increases. Dynamic mapping and routing algorithms can make the network 

perform better than the cost associated with communication between the network and the 

controller. 

As future works, we intend to run the controller software in a real processor, 

connected to the NoC, and evaluate the cost of another's mapping and routing algorithms. 

We intend to implement a migrate task algorithm to migrate communicating tasks closer 
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to each other. We are also implementing new benchmarks to compare IPNoSys III in 

more realistic scenarios. 
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