The virus and socioeconomic inequality: An agent-based model to simulate and assess the impact of interventions to reduce the spread of COVID-19 in Rio de Janeiro, Brazil / O vírus e a desigualdade socioeconômica: um modelo baseado em agentes para simular e avaliar o impacto de intervenções para reduzir a disseminação do COVID-19 no Rio de Janeiro, Brasil

Vinícius Prata Klôh, Gabrieli Dutra Silva, Mariza Ferro, Eric Araújo, Cristiano Barros de Melo, José Roberto Pinho de Andrade Lima, Ernesto Rademaker Martins

Abstract


The emergence of COVID-19 in China, in December of 2019 led to a local epidemic that rapidly spread to multiple countries in the world, including Brazil.  Nowadays, there is an accelerated search to understand the dynamics of the spread of the disease and evaluate the effectiveness of intervention measures.  Given these special socioeconomic conditions surrounding Brazil, using the  predictive  models  developed  for  other  countries  can  make  a  very  incomplete picture of the epidemic,  since these differences could result in different patterns in low income settings.  The aim of this work is to simulate interventions and understand the impact to reduce the spread of COVID-19 considering the  socioeconomic  conditions  of  Brazil.   With  this  purpose  we  use  an  agent- based model (ABM), a subarea of the Artificial Intelligence, as it allows us to treat each individual in a personalized manner, as well as the environment of which they are part.  The simulations have heterogeneous populations, considering different age groups, socioeconomic differences and number of members per family, contacts and movements intra and inter the sub-populations (favelas and non-favelas), numbers of Intensive Care Unit (ICU) and study different scenarios to show how the interventions can influence the spread of the virus in the population of simulated environments.


Keywords


COVID-19; SARS-CoV-2;agent-based modeling; favelas; slums; simulation; artificial intelligence

Full Text:

PDF

References


Adhikari, S., Meng, S., Wu, Y.-J., Mao, Y.-P., Ye, R.-X., Wang, Q.-Z., Sun, C., Sylvia, S., Rozelle, S., Raat, H., and Zhou, H. (2020). Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (covid-19) during the early outbreak period: a scoping review. Infectious Diseases of Poverty, 9.

Adiga, A., Chu, S., Eubank, S., Kuhlman, C. J., Lewis, B., Marathe, A., Marathe, M., Nordberg, E. K., Swarup, S., Vullikanti, A., and Wilson, M. L. (2018). Disparities in spread and control of influenza in slums of delhi: findings from an agent-based modelling study. BMJ Open, 8(1).

Batista, A., Antunes, B., Faveret, G., Peres, I., Dantas, L., Bastos, L., Aguilar, S., Baião, F., Mac¸aira, P., Hamacher, S., Carnevale, R., and Bozza, F. (2020). Dimensionamento de leitos para os casos de infecção por covid-19 no estado do rio de janeiro para o dia 04 de abril de 2020. Technical Report 2, Núcleo de Operações e Inteligência em Saúde (NOIS).

Candido, D. D. S., Watts, A., Abade, L., Kraemer, M. U. G., Pybus, O. G., Croda, J., Oliveira, W., Khan, K., Sabino, E. C., and Faria, N. R. (2020). Routes for COVID-19 importation in Brazil. Journal of Travel Medicine. taaa042.

Cavallieri, F. and Vial, A. (2010). Favelas na cidade do rio de janeiro: o quadro populacional com base no censo 2010. http://portalgeo. rio.rj.gov.br/estudoscariocas/download%5C3190_FavelasnacidadedoRiodeJaneiro_Censo_2010.PDF.

Chen, J., Chu, S., Chungbaek, Y., Khan, M., Kuhlman, C., Marathe, A., Mortveit, H., Vullikanti, A., and Xie, D. (2016). Effect of modelling slum populations on influenza spread in delhi. BMJ Open, 6(9)

da Saúde, M. (2020). Coronavírus no brasil. Technical report, Ministério da Saúde. https://www.saude.gov.br/noticias?start=20. Accessed in: April 13, 2020.

da Silveira Barroso Alves, D., Serrano Barbosa, M. T., Raúl Caffarena, E., and da Silva, A. S. (2016). Caracterização do envelhecimento populacional no município do rio de janeiro: contribuições para pol´?ticas públicas sustentáveis. Cadernos Saúde Coletiva, 24(1). http://www.scielo.br/pdf/cadsc/v24n1/

-462X-cadsc-1414-462X201600010272.pdf.

de Andrade, A. A. S., Silva, G. D., Kloˆh, V. P., and Filho, J. K. (2020). Modelagem epidemiológica da dispersão da tuberculose pulmonar. Aceito para publicação no XIII Encontro Acadeˆmico de Modelagem Computacional (EAMC) 2020.

Del Valle, S. Y., Hyman, J. M., Hethcote, H. W., and Eubank, S. G. (2007). Mixing patterns between age groups in social networks. Social Networks, 29(4):539–554.

Engebretsen, S., Engø-Monsen, K., Frigessi, A., and Freiesleben de Blasio, B. (2019). A theoretical single-parameter model for urbanisation to study infectious disease spread and interventions. PLOS Computational Biology, 15(3):1–36.

Guan, W.-j., Liang, W.-h., Zhao, Y., Liang, H.-r., Chen, Z.-s., Li, Y.-m., Liu, X.-q., Chen, R.-c., Tang, C.-l., Wang, T., Ou, C.-q., Li, L., Chen, P.-y., Sang, L., Wang, W., Li, J.-f., Li, C.-c., Ou, L.-m., Cheng, B., Xiong, S., Ni, Z.-y., Hu, Y., Xiang, J., Liu, L., Shan, H., Lei, C.-l., Peng, Y.-x., Wei, L., Liu, Y., Hu, Y.-h., Peng, P., Wang, J.-m., Liu, J.-y., Chen, Z., Li, G., Zheng, Z.-j., Qiu, S.-q., Luo, J., Ye, C.-j., Zhu, S.-y., Cheng, L.-l., Ye, F., Li, S.-y., Zheng, J.-p., Zhang, N.-f., Zhong, N.-s., and He, J.-x. (2020a). Comorbidity and its impact on 1,590 patients with covid-19 in china: A nationwide analysis. medRxiv.

Guan, W.-j., Ni, Z.-y., Hu, Y., Liang, W.-h., Ou, C.-q., He, J.-x., Liu, L., Shan, H., Lei, C.-l., Hui, D. S., Du, B., Li, L.-j., Zeng, G., Yuen, K.-Y., Chen, R.-c., Tang, C.-l., Wang, T., Chen, P.-y., Xiang, J., Li, S.-y., Wang, J.-l., Liang, Z.-j., Peng, Y.-x., Wei, L., Liu, Y., Hu, Y.-h., Peng, P., Wang, J.-m., Liu, J.-y., Chen, Z., Li, G., Zheng, Z.-j., Qiu, S.-q., Luo, J., Ye, C.-j., Zhu, S.-y., and Zhong, N.-s. (2020b). Clinical characteristics of coronavirus disease 2019 in china. New England Journal of Medicine.

Go´es, L. G. B., Zerbinati, R. M., Tateno, A. F., de Souza, A. V., Ebach, F., Corman, V. M., Moreira-Filho, C. A., Durigon, E. L., da Silva Filho, L. V. R. F., and Drexler, J. F. (2019). Typical epidemiology of respiratory virus infections in a brazilian slum. Journal of Medical Virology.

Hackl, J. and Dubernet, T. (2019). Epidemic spreading in urban areas using agent-based transportation models. Future Internet, 11:92.

He, F., Deng, Y., and Li, W. (2019). Coronavirus disease 2019: What we know? Journal of Medical Virology, n/a(n/a).

Hunter, E., Mac Namee, B., and Kelleher, J. (2018). An open-data-driven agent-based model to simulate infectious disease outbreaks. PLOS ONE, 13(12):1–35.

ICNARC (2020). Icnarc report on covid-19 in critical care 27 march 2020.

Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., Azman, A. S., Reich, N. G., and Lessler, J. (2020). The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine.

Long, E. F., Nohdurft, E., and Spinler, S. (2018). Spatial resource allocation for emerging epidemics: A comparison of greedy, myopic, and dynamic policies. Manufacturing & Service Operations Management, 20(2):181–198.

Oliveira, I. M. d. et al. (2008). Modelos epidemiologicos seir.

Pereira, A. G. L., Medronho, R. d. A., Escosteguy, C. C., Valencia, L. I. O., and Magalhães, M. d. A. F. M. (2015). Spatial distribution and socioeconomic context of tuberculosis in rio de janeiro, brazil. Revista de saude publica, 49:48.

Railsback, S. F. and Grimm, V. (2019). Agent-based and individual-based modeling: a practical introduction. Princeton university press.

Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., Zimmer, T., Thiel, V., Janke, C., Guggemos, W., Seilmaier, M., Drosten, C., Vollmar, P., Zwirglmaier, K., Zange, S., Wolfel, R., and Hoelscher, M. (2020). Transmission of

-ncov infection from an asymptomatic contact in germany. New England Journal of Medicine, 382(10):970–971.

Sanders, J. M., Monogue, M. L., Jodlowski, T. Z., and Cutrell, J. B. (2020). Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA.

Shi, Y., Wang, Y., Shao, C., Huang, J., Gan, J., Huang, X., Bucci, E., Piacentine, M., Ippolito, G., and Melino, G. (2020). Covid-19 infection: the perspectives on immune responses. Cell Death Differentiation.

Sun, J., He, W.-T., Wang, L., Lai, A., Ji, X., Zhai, X., Li, G., Suchard, M. A., Tian, J., Zhou, J., Veit, M., and Su, S. (2020). Covid-19: Epidemiology, evolution, and cross-disciplinary perspectives. Trends in Molecular Medicine.

Verma, R., Chayal, V., Kumar, R., Bhalla, K., Dhankar, M., Dhaka, R., and Agrawal, G. (2018). Community perception about swine flu in an urban slum of haryana: A cross-sectional study. Family Medicine and Primary Care, 6:1515–1520.

Vial, A., Dias, A., Fartes, B., Patrocinio, B., Ribeiro, B., Borba, C., Tepedino, C., Bovolenta, D., Autran, G., Santos, J., Couto, L., Paiva, L., Salandia, L., Pandolfi, M., Franc¸a, M., Veiga, P., Brito, P., and Moraes, R. (2017). Caderno ficha dos territórios. Technical Report 2, Instituto Pereira Passos.




DOI: https://doi.org/10.34119/bjhrv3n2-192

Refbacks

  • There are currently no refbacks.