O autismo e o potencial uso de inibidores do receptor tipo 1A de Vasopressina para seu tratamento / Autism and the potential use of Vasopressin type 1A receptor inhibitors for your treatment

Authors

  • Allana Cristina Faustino Martins Martins Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Eduardo Borges de Melo

DOI:

https://doi.org/10.34119/bjhrv3n2-064

Keywords:

TEA, vasopressina, estudos clínicos, balovaptan

Abstract

O Transtorno do Espectro Autista (TEA), ou autismo, é caracterizado por um espectro de comportamentos caracterizados por dificuldades sociais e comportamentais, déficits de comunicação verbais e não verbais e na capacidade de interação social, interesses restritos e comportamentos estereotipados. O aumento dramático na prevalência na última década foi acompanhado por uma abundância de novas estratégias de pesquisa e tratamento. Embora ainda não exista causa ou cura conhecida, a progressão substancial do conhecimento sobre este transtorno vem aumento substancialmente, abrindo a possibilidade de desenvolvimento de tratamentos farmacológicos mais eficientes. Este trabalho tem por objetivo apresentar os pontos principais deste transtorno, contextualizando assim o desenvolvimento dos inibidores do receptor 1A de vasopressina (V1AR), primeira classe de fármacos com chance de ser aprovado para tratamento específico do TEA, e não de sintomas associados, e que atualmente encontram-se em estudos clínicos de fase III.

 

References

UNITED STATES. Autism and Developmental Disabilities Monitoring Network Surveillance Year 2006 Principal Investigators. Prevalence of autism spectrum disorders—Autism and Developmental Disabilities Monitoring Network, United States, 2006. MMWR Surveill Summ 2009; 58 (No. SS-10).

UNITED STATES. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.

WING, L; Gould J: Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. J autism Dev Disord 1979, 9:11-29.

LORD, C., Elsabbagh M., Baird, G, Veenstra-VanderWeele, J. Autism spectrum disorder. Lancet 392, 508–520 (2018).

YENKOYAN, K.; Grigoryan, A.; Fereshetyan, K.; Yepremyan, D.; Advances in understanding the pathophysiology of autism spectrum disorders. Behav Brain Res. 2017,331, 92-101

LORD, C., Petkova E, Hus V, Gan W, Lu F, Martin DM, Ousley O, Guy L, Bernier R, Gerdts J, et al.: A multisite study of the clinical diagnosis of different autism spectrum disorders. Arch Gen Psychiatry 2012, 69:306-313.

SHARMA, S.R.; Gonda, X.; Tarazi, F.I.; Autism Spectrum Disorder: Classification, diagnosis and therapy. Pharmacol Ther. 2018, 190, 91-104

MUNDY P. Annotation: the neural basis of social impairments in autism: the role of the dorsal medial-frontal cortex and anterior cingulate system. J Child Psychol Psychiatry 2003;44(6):793–809.

BARGIELA, S.; Steward, R.; Mandy, W.; The Experiences of Late-diagnosed Women with Autism Spectrum Conditions: An Investigation of the Female Autism Phenotype. J Autism Dev Disord. 2016, 46, 3281-94; Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. (2018). Autism spectrum disorder. The Lancet, 392 (10146), 508–520

KANNER L. Autistic disturbances of affective contact. Nerv Child 1943;2:217-50.

BAILEY A, Phillips W, Rutter M. Autism: towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. J Child Psychol Psychiatry 1996;37:89-126.

CHARMAN T, Jones C, Pickles A, Simonoff E, Baird G, Happé F: Defining the cognitive phenotype of autism. Brain Res 2011, 1380:10–21.

TAGER-FLUSBERG, H. Defining language phenotypes in autism. Clin Neurosci Res 2006, 6:219–224.

WALKER, D., Thompson A, Zwaigenbaum L, Goldberg J, Bryson S, Mahoney W, et al: Specifying PDD-NOS: a comparison of PDD-NOS, asperger syndrome, and autism. J Am Acad Child Adolesc Psychiatry 2004, 43:172–180.

LORD, C., Petkova E, Hus V, Gan W, Lu F, Martin D, et al: A multisite study of the clinical diagnosis of different autism spectrum disorders. Arch Gen Psychiatry 2011, 69:306–313.

MACINTOSH K, Dissanayake C: Annotation: the similarities and differences between autistic disorder and asperger’s disorder: a review of the empirical evidence. J Child Psychol Psychiatry 2004, 45:421–434.

MALHOTRA, S., Gupta N: Childhood disintegrative disorder re-examination of the current concept. Eur Child Adolesc Psychiatry 2002, 11:108–114.

OZONOFF, S., South M, Miller J: DSM-IV-defined asperger syndrome: cognitive, behavioral and early history differentiation from high- functioning autism. Autism 2000, 4:29–46.

SNOW, A., Lecavalier L: Comparing autism, PDD-NOS, and other developmental disabilities on parent-reported behavior problems: little evidence for ASD subtype validity. J Autism Dev Disord 2011, 41:302–310.

HOWLIN, P. Outcome in high-functioning adults with autism with and without early language delays: implications for the differentiation between autism and Asperger syndrome. J Autism Dev Disord 2003, 33:3–13.

SZATMARI, P., Bryson S, Duku E, Vaccarella L, Zwaigenbaum L, Bennett T, et al: Similar developmental trajectories in autism and Asperger syndrome: from early childhood to adolescence. J Child Psychol Psychiatry 2009, 50:1459–1467.

SZATMARI, P., Bryson S, Boyle M, Streiner D, Duku E: Predictors of outcome among high functioning children with autism and Asperger syndrome. J Child Psychol Psychiatry 2003, 44:520–528.

MCPARTLAND, J., Reichow B, Vokmar F: Sensitivity and specificity of proposed DSM-5 diagnostic criteria for autism spectrum disorder. J Am Acad Child Adolesc Psychiatry 2012, 51:368–383.

GESCHWIND, D. H. . Advances in Autism. Annual Review of Medicine, 2009. 60(1), 367–380.

TAYLOR, L.E., Swerdfeger AL, Eslick GD. Vaccines are not associated with autism: An evidence?based meta?analysis of case?control and cohort studies. Vaccine 2014;32:3623?9.

BJORKLUND, Geir & Meguid, Nagwa & ELBana, Mona & Tinkov, Alexey & Saad, Khaled & Dadar, Maryam & Hemimi, Maha & Skalny, Anatoly & Hosnedlová, Božena & Kizek, Rene & Osredkar, Josko & Urbina, Mauricio & Fabjan, Teja & El-Houfey, Amira & Ka?u?na-Czapli?ska, Joanna & G?tarek, Paulina. (2020). Oxidative Stress in Autism Spectrum Disorder. Molecular Neurobiology. First Online. 10.1007/s12035-019-01742-2.

LYALL, K., Schmidt RJ, Hertz?Picciotto I. Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int J Epidemiol 2014;43:443?64.

MUNDY, P. Annotation: the neural basis of social impairments in autism: the role of the dorsal medial-frontal cortex and anterior cingulate system. J Child Psychol Psychiatry 2003;44(6):793–809.

ROGERS, S.J., Hepburn SL, Stackhouse T, et al. Imitation performance in toddlers with autism and those with other developmental disorders. J Child Psychol Psychiatry 2003;44(5):763–81.

TUCHMAN, R. Autism. Neurol Clin 2003;21(4):915–32, viii.

ROGERS, S.J. Developmental regression in autism spectrum disorders. Ment Retard Dev Disabil Res Rev 2004;10(2):139–43.

KARANDE, S. Autism: a review for family physicians. Indian J Med Sci 2006;60(5): 205–15.

MEYERS, S. D. et al Research in Autism Spectrum Disorders 2013, 7, 109; Cassidy, S. et al. Lancet Psychiatry 2014, 1, 142.

FREITAG, C. M. The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry. 2007 Jan;12(1):2-22. Epub 2006 Oct 10.

LYALL, K., Lisa Croen, Julie Daniels, M. Daniele Fallin, Christine Ladd-Acosta, Brian K. Lee, Bo Y. Park, Nathaniel W. Snyder, Diana Schendel, Heather Volk, Gayle C. Windham, and Craig Newschaffer. The Changing Epidemiology of Autism Spectrum Disorders. Annu. Rev. Public Health 2017, 38, 81–102

UNITED STATES. Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators, Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years – Autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ 2014;63:1?21.

LORD, C, Petkova E, Hus V, Gan W, Lu F, Martin DM, Ousley O, Guy L, Bernier R, Gerdts J, et al.: A multisite study of the clinical diagnosis of different autism spectrum disorders. Arch Gen Psychiatry 2012, 69:306-313.

MUNDY, P. Annotation: the neural basis of social impairments in autism: the role of the dorsal medial-frontal cortex and anterior cingulate system. J Child Psychol Psychiatry 2003;44(6):793–809.

DONVAN, J.; Zucker, C.; Outra Sintonia: a História do Autismo. São Paulo: Companhia das Letras, 2017.

OLIVEIRA, C. Um retrato do autismo no Brasil. Rev Espaço Aberto Ed. 170, 2020. USP, São Paulo. Disponível em: http://www.usp.br/espacoaberto/?materia=um-retrato-do-autismo-no-brasil

BAIO J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, et al. Prevalence of autism spectrum disorder among children aged 8 years – autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ 2018; 67:1-23

LORD, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. (2018). Autism spectrum disorder. The Lancet, 392 (10146), 508–520.; Bargiela, S.; Steward, R.; Mandy, W.; The Experiences of Late-diagnosed Women with Autism Spectrum Conditions: An Investigation of the Female Autism Phenotype. J Autism Dev Disord. 2016, 46, 3281-94.

GHOSH, A.; Michalon, A.; Lindemann, L.; Fontoura, P.; Santarelli, L.; Nature Reviews Drug Discovery 2013, 12, 777;

BELTRÃO-BRAGA, P.C.; Muotri, A.R. Modeling autism spectrum disorders with human neurons. Brain Res. 2017, 1656, 49-54.

SALCEDO-ARELLANO, M.J.; Dufour, B.; McLennan, Y.; Martinez-Cerdeno, V.; Hagerman, R.; Fragile X syndrome and associated disorders: Clinical aspects and pathology. Neurobiology of Disease. Volume 136, March 2020, Article number 104740).

COSENTINO, L., Vigli, D., Franchi, F., Laviola, G., De Filippis, B. Rett syndrome before regression: A time window of overlooked opportunities for diagnosis and intervention. Neuroscience and Biobehavioral Reviews 107, pp. 115-135, 2019.

ORNOY, A., Liza, W., Ergaz, Z. Genetic syndromes, maternal diseases and antenatal factors associated with autism spectrum disorders (ASD). Frontiers in Neuroscience 10 (JUL), 316, 2016.

KHATRI, N., Man, H.-Y. The autism and Angelman syndrome protein Ube3A/E6AP: The gene, E3 ligase ubiquitination targets and neurobiological functions. Frontiers in Molecular Neuroscience 2019, 12, 109.

HARRIS, R.M., Stafford, D.E.J. Prader Willi syndrome: Endocrine updates and new medical therapies. Current Opinion in Endocrinology, Diabetes and Obesity 27(1), pp. 56-62, 2020.

KOLEVZON, A., Delaby, E., Berry-Kravis, E., Buxbaum, J.D., Betancur, C. Neuropsychiatric decompensation in adolescents and adults with Phelan-McDermid syndrome: A systematic review of the literature. Molecular Autism 10 (1), 50, 2019

SATTERSTROM, F. K. et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020, 180, 568-584

KANNER L. Autistic disturbances of affective contact. Nerv Child 1943;2:217-50.

KIM, S. K. Recent update of autism spectrum disorders. Korean Journal of Pediatrics, (2015) 58(1), 8.

HOWLIN, P., P. Moss, Adults with autism spectrum disorders. Can. J. Psychiatry 57, 275–283 (2012).

HOUGHTON, R., R. C. Ong, F. Bolognani, Psychiatric comorbidities and use of psychotropic medications in people with autism spectrum disorder in the United States. Autism Res. 10, 2037–2047 (2017).

BRUGHA, T. S., L. Doos, A. Tempier, S. Einfeld, P. Howlin, Outcome measures in intervention trials for adults with autism spectrum disorders: A systematic review of assessments of core autism features and associated emotional and behavioural problems. Int. J. Methods Psychiatr. Res. 24, 99–115 (2015).

WEELE, V., E. H. Cook, B. H. King, P. Zarevics, M. Cherubini, K. Walton-Bowen, M. F. Bear, P. P. Wang, R. L. Carpenter, Arbaclofen in children and adolescents with autism spectrum disorder: A randomized, controlled, phase 2 trial. Neuropsychopharmacology 42, 1390–1398 (2017).

WILLIAMS, K., A. Brignell, M. Randall, N. Silove, P. Hazell, Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD). Cochrane Database Syst. Rev. 19, CD004677 (2013).

BERRY-KRAVIS, E.M., Lindemann L, Jønch AE, et al. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov. 2018;17(4):280–299. doi:10.1038/nrd.2017.221

LACIVITA, E.; Perrone, R.; Margari, L.; Leopoldo, M.; Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. J Med Chem. 2017, 60, 9114-9141

BRUGHA, T. S., L. Doos, A. Tempier, S. Einfeld, P. Howlin, Outcome measures in intervention trials for adults with autism spectrum disorders: A systematic review of assessments of core autism features and associated emotional and behavioural problems. Int. J. Methods Psychiatr. Res. 24, 99–115 (2015).

ANAGNOSTOU, E., N. Jones, M. Huerta, A. K. Halladay, P. Wang, L. Scahill, J. P. Horrigan, C. Kasari, C. Lord, D. Choi, K. Sullivan, G. Dawson, Measuring social communication behaviors as a treatment endpoint in individuals with autism spectrum disorder. Autism 19, 622–636 (2015).

TINSEL, R., The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron 65, 768–779 (2010).

ALBERS, H. E., The regulation of social recognition, social communication and aggression: Vasopressin in the social behavior neural network. Horm. Behav. 61, 283–292

(2012).

RILLING, J. K., A. C. DeMarco, P. D. Hackett, R. Thompson, B. Ditzen, R. Patel, G. Pagnoni. Effects of intranasal oxytocin and vasopressin on cooperative behavior and associated brain activity in men. Psychoneuroendocrinology 37, 447–461 (2012).

RILLING, J. K., A. C. Demarco, P. D. Hackett, X. Chen, P. Gautam, S. Stair, E. Haroon,

R. Thompson, B. Ditzen, R. Patel, G. Pagnoni, Sex differences in the neural and behavioral response to intranasal oxytocin and vasopressin during human social interaction. Psychoneuroendocrinology 39, 237–248 (2014).

THOMPSON, R., S. Gupta, K. Miller, S. Mills, S. Orr, The effects of vasopressin on human facial responses related to social communication. Psychoneuroendocrinology 29, 35–48 (2004).

THOMPSON, R., K. George, J. C. Walton, S. P. Orr, J. Benson, Sex-specific influences of vasopressina on human social communication. Proc. Natl. Acad. Sci. U.S.A. 103, 7889–7894 (2006).

GUASTELLA, A. J., A. R. Kenyon, G. A. Alvares, D. S. Carson, I. B. Hickie, Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biol. Psychiatry 67, 1220–1222 (2010).

MEYER-LINDENBERG, A., B. Kolachana, B. Gold, A. Olsh, K. K. Nicodemus, V. Mattay, M. Dean, D. R. Weinberger, Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Mol. Psychiatry 14, 968–975

(2009).

EBSTEIN, R. P., A. Knafo, D. Mankuta, S. H. Chew, P. S. Lai, The contributions of oxytocin and vasopressin pathway genes to human behavior. Horm. Behav. 61, 359–379 (2012).

KREEK, M. J., Zhou Y., Levran O. Functions of Arginine Vasopressin and Its Receptors: Importance of Human Molecular Genetics Studies in Bidirectional Translational Research, Biological Psychiatry, Volume 70, Issue 6, 2011. Pages 502-503.

BENARROCH, E. E., Oxytocin and vasopressin: Social neuropeptides with complex neuromodulatory functions. Neurology 80, 1521–1528 (2013).

STOOP, R., Neuromodulation by oxytocin and vasopressin. Neuron 76, 142–159 (2012).

YOUNG, W. S., J. Li, S. R. Wersinger, M. Palkovits, The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy. Neuroscience 143, 1031–1039 (2006).

GREEN, W. B., Zwiers, M. P., van der Gaag, R. J., and Buitelaar, J. K. (2008). The phenotype and neural correlates of language in autism: an integrative review. Neurosci. Biobehav. Rev. 32, 1416–1425. doi: 10.1016/j.neubiorev.2008. 05.008

INSEL, T. R. The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron 2010, 65, 768?779.

BIELSKY, I.F., and Young, L.J. (2004). Oxytocin, vasopressin, and social recognition in mammals. Peptides 25, 1565–1574.

BIELSKY, I.F., Hu, S.B., Ren, X., Terwilliger, E.F., and Young, L.J. (2005). The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron 47, 503–513.

MURAKAMI, G., Hunter, R. G., Fontaine, C., Ribeiro, A., and Pfaff, D. (2011). Relationships among estrogen receptor, oxytocin and vasopressin gene expression and social interaction in male mice. Eur. J. Neurosci. 34, 469–477.

PARKER, K. J., Oztan, O., Libove, R. A., Sumiyoshi, R. D., Jackson, L. P., Karhson, D. S., … Hardan, A. Y. (2017). Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proceedings of the National Academy of Sciences, 201705521.

BOLOGNANI, F., del Valle Rubido, M., Squassante, L., Wandel, C., Derks, M., Murtagh, L., … Fontoura, P. (2019). A phase 2 clinical trial of a vasopressin V1a receptor antagonist shows improved adaptive behaviors in men with autism spectrum disorder. Science Translational Medicine, eaat7838.

CHRISTENSEN, J., T. K. Grønborg, M. J. Sørensen, D. Schendel, E. T. Parner, L. H. Pedersen, M. Vestergaard, Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 309, 1696–1703 (2013).

SCHNEIDER, T., R. Przewlocki, Behavioral alterations in rats prenatally exposed to valproic acid: Animal model of autism. Neuropsychopharmacology 30, 80–89 (2005).

FELIZ-ORTIZ,A. C., M. Febo, Gestational valproate alters BOLD activation in response to complex social and primary sensory stimuli. PLoS One 7, e37313 (2012).

UMBRICHT, D., M. del Valle Rubido, E. Hollander, J. T. McCracken, F. Shic, L. Scahill, J. Noeldeke, L. Boak, O. Khwaja, L. Squassante, C. Grundschober, H. Kletzl, P. Fontoura. A single dose, randomized, controlled proof-of-mechanism study of a novel vasopressin 1a receptor antagonist (RG7713) in high-functioning adults with autism spectrum disorder. Neuropsychopharmacology 42, 1914–1923 (2017).

RATNI, H., M. Rogers-Evans, C. Bissantz, C. Grundschober, J.-L. Moreau, F. Schuler, H. Fischer, R. Alvarez Sanchez, P. Schnider, Discovery of highly selective brain-penetrant vasopressin 1a antagonists for the potential treatment of autism via a chemogenomic and scaffold hopping approach. J. Med. Chem. 58, 2275–2289 (2015).

FORGEOT D’ARC, B., Mottron, L., Elsabbagh, M., & Jacquemont, S. . Tinkering with the vasopressin pathway in autism. Science Translational Medicine, (2019) 11(491).

Published

2020-03-18

How to Cite

MARTINS, A. C. F. M.; DE MELO, E. B. O autismo e o potencial uso de inibidores do receptor tipo 1A de Vasopressina para seu tratamento / Autism and the potential use of Vasopressin type 1A receptor inhibitors for your treatment. Brazilian Journal of Health Review, [S. l.], v. 3, n. 2, p. 2087–2112, 2020. DOI: 10.34119/bjhrv3n2-064. Disponível em: https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/7826. Acesso em: 28 mar. 2024.

Issue

Section

Original Papers