Inibidores de Ebna1 como alvos para terapias associadas a oncogênese do herpesvírus humano 4 / Ebna1 inhibitors as targets for therapies associated with oncogenesis of human herpesvirus 4

Marcos Daniel Mendes Padilha, Ludmilla Ferreira Costa, Francisco Canindé Ferreira de Luna, Murilo Tavares Amorim, Clebson Pantoja Pimentel, Walter Felix Franco Neto, Jardel Fabio Lopes Ferreira, Gustavo Moraes Holanda

Abstract


Introdução: O  vírus Epstein-Barr (EBV) ou Herpesvírus Humano 4 (HHV-4) está associado ao carcinoma nasofaríngeo e diferentes malignidades em pacientes infectados, as taxas de mortalidade destacam a necessidade de pesquisas direcionadas a oncogênese causada pelo vírus. A proteína antígeno nuclear 1 (EBNA1) tem sido alvo de pesquisas pela função de latência e replicação durante o processo oncogênico e inibidores anti-EBNA1 e EBV estão sendo amplamente testados. Metodologia: Esta pesquisa é uma revisão sistemática descritiva, a plataforma de busca para análise dos artigos foi o NCBI e lista de referência dos artigos selecionados. Os termos considerados foram: Antígenos nucleares EBV, Carcinoma nasofaríngeo, EBNA1, Inibidores de EBNA1. Os artigos escolhidos obedeceram o ano de 1998 a 2020. Objetivos: Analisar possíveis inibidores de EBNA1 e EBV sobre oncogênese do HHV-4. Resultados e discussão: Roscovitina, Poliamidas, Inibidores de Hsp90, Compostos SC7,11 e 19 e Antígenos direcionados para CDs in vivo e ex vivo tiveram alta eficiência em modelos experimentais de células infectadas para possíveis terapias anti-EBV e EBNA1. Conclusão: As pesquisas no uso de inibidores EBNA1 e EBV apresentaram resultados promissores onde as células que foram expostas a infecção causaram redução da replicação e depleção de genomas EBV. Outra descoberta que potencializa uma cura para EBV e bloqueio da atividade de latência EBNA1 é o uso de terapias adjuvantes como os inibidores checkpoint

 


Keywords


Antígenos nucleares EBV, Carcinoma nasofaríngeo, EBNA1, Inibidores de EBNA1

References


ANGUILLE, S.; SMITS, E. L.; LION, E. et al. Clinical use dendritic cells for cancer therapy. The Lancet Oncology. 2014; 15:e257-67. doi: 10.1016/S1470-2045(13)70585-0.

BONTKES, H. J.; KRAMER, D.; RUIZENDAAL, J. J. et al. Dendritic cells transfected with interleukin-12 and tumor-associated antigen messenger RNA induce high avidity cytotoxic T cells. Gene Therapy. 2006; 14:366-375. doi: 10.1038/sj.gt.3302874.

BONTKES, H. J.; KRAMER, D.; RUIZENDAAL, J. J. et al. Tumor associated antigen and interleukin-12 mRNA transfected dendritic cells enhance effector function of natural killer cells and antigen specific T-cells. Clinical Immunology. 2008; 127:375-384. doi: 10.1016/j.clim.2008.02.001.

CERBONI, S.; GENTILI, M.; MANEL, N. Diversity of pathogen sensors in dendritic cells. Adv Immunol. 2013; 120:211-237. doi: 10.1016/B978-0-12-417028-5.00008-9.

CHENOWETH, D. M.; DERVAN, P. B. Structural Basis for Cyclic Py-Im Polyamide Allosteric Inhibition of Nuclear Receptor Binding. Journal of the American Chemical Society. 2010; 132(41):14521-14529. doi: 10.1021/ja105068b.

CICENAS, J.; KALYAN, K.; SOROKINAS, A. et al. Roscovitine in Cancer and Other diseases. Annals of Translational Medicine. 2015; 3(10):1-12. doi: 10.3978/j.issn.2305-5839.2015.03.61.

COFFMAN, R. L.; SHER, A.; SEDER, R. A. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010; 33:492-503. doi: 10.1016/j.immuni.2010.10.002.

DERVAN, P. B.; EDELSON, B. S. Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Elsevier. 2003; 13(3):284-299. doi: 10.1016/S0959-440X(03)00081-2.

DEY, A.; WONG, E. T.; CHEOK, C. F. et al. R-Roscovitine simultaneously targets both the p53 and NF-kB pathways and causes potentiation of apoptosis: implications in cancer therapy. Cell Death and Differentiation. 2007; 15:263-273. doi: 10.1038/sj.cdd.4402257.

DHODAPKAR, M. V.; SZNOL, M.; ZHAO, M. et al. Induction of Antigen-Specific Immunity with Vaccine Targeting NY-ESO-1 to the Dendritic Cell Receptor DEC-205. Clinical Trial. 2014; 6(232):1-22. doi: 10.1126/scitranslmed.3008068.

DICKINSON, L. A.; GULIZIA, R. J.; TRAUGER, J. W. et al. Inhibition of RNA polymerase transcription in human cells by synthetic DNA-binding ligands. PNAS. 1998; 95(22):12890-12895. doi: 10.1073/pnas.95.22.12890.

DIKIC, I.; ELAZAR, Z. Mechanism and medical implications of mammalian autophagy. Nature Reviews Molecular Cell Biology. 2018; 19(6):349-364. doi: 10. 1038/s41580-018-0003-4.

DUELLMAN, S. J.; THOMPSON, K. L.; COON, J. J. et al. Phosphorylation sites of Epstein-Barr virus EBNA1 regulate its function. J Gen Virol. 2009; 90:2251-2259. doi: 10.1099/vir.0.012260-0.

ECHEVERRÍA, P. C.; BERNTHALER, A.; DUPUIS, P. et al. An Interaction Network Predicted from Public Data as a Discovery Tool: Application to the Hsp90 Molecular Chaperone Machine. Plos One. 2011; 6(10):e26044. doi: 10.1371/journal.pone.0026044.

EL-SHARKAWY, A.; ZAIDAN, L. A.; MALKI, A. Epstein-Barr Virus-Associated Malignancies: Roles of Viral Oncoproteins in Carcinogenesis. Frontiers in Oncology. 2018; 8(265):1-13. doi: 10.3389/fonc.2018.00265.

GALLUCI, S.; MATZINGER, P. Danger signals: SOS to the immune system. Curr Opin Immunol. 2001; 13(1):114-119. doi: 10.1016/s0952-7915(00)00191-6.

GANAPATHI, S. B.; KESTER, M.; ELMSLIE, K. S. State-dependent block of HERG potassium channels by R-roscovitine: implications for cancer therapy. American Journal of Physiology Cell Physiology. 2009; 296(4):C701-C710. doi: 10.1152/ajpcell.00633.2008.

GARG, A. D.; PEREZ, M. V.; SCHAAF, M. et al. Tria watch: Dendritic cell-based anticancer immunotherapy. Oncoimmunology. 2017; 6(7):e1328341. doi: 10.1080/2162402X.2017.1328341.

GARG, G.; KHANDELWAL, A.; BLAGG, B. S. J. Anticancer Inhibitors of Hsp90 Function: Beyonde the Usual Suspects. Adv Cancer Res. 2016; 129:51-88. doi: 10.1016/bs.acr.2015.12.001.

GARY, C.; HAJEK, M.; BIKTASOVA, A. et al. Selective antitumor activity of roscovitine in head and neck cancer. Oncotarget. 2016; 7(25):38598-38611. doi: 10.18632/oncotarget.9560.

GIANTI, E.; MESSICK, T. E.; LIEBERMAN, P. M.; ZAUHAR, R. Computational analysis of EBNA1 “druggability” suggests novel insights for Epstein-Barr virus inhibitor design. J Comput Aided Mol Des. 2016; 30(4):285-303. doi: 10.1007/s10822-016-9899-y.

GURER, C.; STROWIG, T.; BRILOT, F. et al. Targeting the nuclear antigen 1 of Epstein-Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses. Blood. 2008; 112(4):1231-1239. doi: 10.1182/blood-2008-03-148072.

HAU, M. P.; LUNG, H. L.; WU, M. et al. Targeting Epstein-Barr Virus in Nasopharyngeal Carcinoma. Frontiers in Oncology. 2020; 10(600):1-18. doi: 10.3389/fonc.2020.00600.

HAWIGER, D.; INABA, K.; DORSETT, Y. et al. Dendritic Cells Induce Peripheral T Cell Unresponsiveness Under Steady State Conditions In Vivo. J. Exp. Med. 2001; 194(6):769-780. doi: 10.1084/jem.194.6.769.

HERMANS, I. F.; SILK, J. D.; GILEADI, U. et al. NK Cells Enhance CD4+ and CD8+ Response To Soluble Antigen In Vivo through Direct Interaction with Dendritic Cells. The Journal of Immunology. 2003; 171(10):5140-5147. doi: 10.40409/jimmunol.171.10.5140.

JIANG, L.; XIE, C.; LUNG, H. L. et al. EBNA1-targeted inhibitors: Novel approaches for the treatment of Epstein-Barr virus-associated cancers. Theranostics. 2018; 8(19):5307-5319. doi: 10.7150/thno.26823.

KANG, J. S.; DERVAN, P. B. A sequence-specific binding small molecule triggers the release of immunogenic signals and phagocytosis in a model of B-cell lymphoma. Q Rev Biophys. 2015; 48(4):1-20. doi: 10.1017/S0033583515000104.

KRETSCHMER, K.; APOSTOLOU, I.; HAWIGER, D. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nature Immunology. 2005; 6(12):1219-1227. doi: 10.1038/ni1265.

LEONHARTSBERGER, N.; RAMONER, R.; FALKENSAMMER, C. et al. Quality of life during dendritic cell vaccination against metastatic renal cell carcinoma. Cancer Immunol Immunother. 2012; 61:1407-1413. doi: 10.1007/s00262-012-1207-7.

LI, N.; THOMPSON, S.; SCHULTZ, D. C. et al. Discovery of Selective Inhibitors Against EBNA1 via High Throughput In Silico Virtual Screening. Plos One. 2010; 5(4):e10126. doi: 10.1371/journal.pone.0010126.

MAHNKE, K.; GUO, M.; LEE, S. et al. The Dendritic Cell Receptor for Endocytosis, DEC-205, Can Recycle and Enhance Antigen Presentation via Major Histocompatibility Complex Class II-Positive Lysosomal Compartments. The Journal of Cell Biology. 2000; 151(3):673-684. doi: 10.1083/jcb.151.3.673.

MASTELIC-GAVILLET, B.; BALINT, K.; BOUDOUSQUIE, C. et al. Personalized Dendritic Cell Vaccines - Recent Breakthroughs and Encouraging Clinical Results. Frontiers in Immunology. 2019; 10(766):1-10. doi: 10.3389/fimmu.2019.00766.

MOHAPATRA, S.; CHU, B.; WEI, S. et al. Roscovitine Inhibits STAT5 Activity and Induces Apoptosis in the Human Leukemia Virus Type 1-Transformed Cell Line MT-2. Cancer Research. 2003; 63:8523-8530. PMID: 14679020.

MORALES-SÁNCHEZ, A.; FUENTES-PANANÁ, E. M. Human Viruses and Cancer. Viruses. 2014; 6:4047-4079. doi: 10.3390/v6104047.

MUI, U. N.; HALEY, C. T.; TYRING, S. K. Viral Oncology: Molecular Biology and Pathogenesis. 2017; 6(111):1-58. doi: 10.3390/jcm6120111.

MUNZ, C. Autophagy Beyond Intracellular MHC Class II Antigen Presentation. Trends in Immunology. 2016; 37(11):755-763. doi: 10.1016/j.it.2016.08.017.

NECKRES, L.; NECKERES, K. Heat-shock protein 90 inhibitors as novel cancer chemotherapeutic agents. Expert Opinion On Emerging Drugs. 2002; 7(2):277-288. doi: 10.1517/14728214.7.2.277.

O’KEEFFE, M.; MOK, W. H.; RADFORD, K. J. Human dendritic cell subsets and function in health and disease. Cellular and Molecular Life Sciences. 2015; 71(22):4309-4325. doi: 10.1007/s00018-015-2005-0.

O’NEILL, D.; BHARDWAJ, N. Generation of Autologous Peptide- and Protein- Pulsed Dendritic Cell for Patient-Specific Immunotherapy. Methods in Molecular Medicine. 2005; 109:97-112. doi: 10.1385/1-59259-862-5:097.

PALUCKA, K.; BANCHEREAU, J. Diversity and collaboration for effective immunotherapy. Nature Medicine. 2016; 22(12):1390-1391. doi: 10.1038/nm.4249.

PAPRSKAROVA, M.; KRYSTOF, V.; JORDA, R. et al. Functional p53 in Cells Contributes to the Anticancer Effect of the Cyclin-Dependent Kinase Inhibitor Roscovitine. Journal of Cellular Biochemistry. 2009; 107:428-437. doi: 10.1002/jcb.22139.

PARDO, L. A.; CONTRERAS-JURADO, C.; ZIENTKOWSKA, M. et al. Role of Voltage-gated Potassium Channels in Cancer. The Journal of Membrane Biology. 2005; 205(3):115-124. doi: 10.1007/s00232-005-0776-1.

PETZOLD, C.; SCHALLENBERG, S.; STERN, J. N. H. et al. Target Antigen Delivery to DEC-205+ Dendritic Cells for Tolerogenic Vaccination. The Review of Diabetic Studies. 2012; 9(4):305-318. doi: 10.1900/RDS.2012.9.305.

RASKATOV, J. A.; HARGROVE, A. E.; SO, A. Y. et al. Pharmacokinetics of Py-Im Polyamides Depend on Architecture: Cyclic versus Linear. J Am Chem Soc. 2012b; 134(18):7995-7999. doi: 10.1021/ja302588v.

RASKATOV, J. A.; NICKOLS, N. G.; HARGROVE, A. E. et al. Gene expression changes in a tumor xenograft by a pyrrole-imidazole polyamide. PNAS. 2012a; 109(40):16041-16045. doi: 10.1073/pnas.1214267109.

RAYNAUD, F. I.; WHITTAKER, S. R.; FISCHER, P. M. et al. In vitro and In vivo Pharmacokinetic-Pharmacodynamic Relationships for the Trisubstituted Aminopurine Cyclin-Dependent Kinase Inhibitors Olomoucine, Bohemine and CYC202. Cancer Therapy: Preclinical. 2005; 11(13):4875-4887. doi: 10.1158/1078-0432.CCR-04-2264.

RUTHERFORD, S. L.; LINDQUIST, S. Hsp90 as a capacitor for morphological evolution. Nature. 1998; 396(6709):336-342. doi: 10.1038/24550.

SANTOS, P. M.; BUTTERFIELD, L. H. Dendritic Cell-Based Cancer Vaccines. J Immunol. 2018; 200(2):1-18. doi: 10.4049/jimmunol1701024.

SHARMA, A.; KOLDOVSKY, U.; XU, S. et al. HER-2 Pulsed Dendritic Cell Vaccine Can Eliminate HER-2 Expression and Impact Ductal Carcinoma In Situ. Cancer. 2011; 1-9. doi: 10.1002/cncr.26734.

SHATZER, A.; ALI, M. A.; CHAVEZ, M. et al. Ganetespib, an HSP90 inhibitor, kills Epstein-Barr virus (EBV) infected B and T cells and reduces the percentage of EBV-infected cells in the blood. Leuk Lymphoma. 2017; 58(4):1-15. doi: 10.1080/10428194.2016.1213823.

SOARES, H.; WAECHTER, H.; GLAICHENHAUS, N. et al. A subset of dendritic cells induces CD4+ T cells to produce IFN-γ by an IL-12-independent but CD70-dependent mechanism in vivo. The Journal of Experimental Medicine. 2007; 204(5):1095-1106. doi: 10.1084/jem.20070176.

SPROOTEN, J.; CEUSTERS, J.; COOSEMANS, A. et al. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology. 2019; 8(11):e1638212. doi: 10.1080/2162402X.2019.1638212.

SUN, X.; BARLOW, E. A.; MA, S. et al. Hsp90 inhibitors block outgrowth of EBV-infected malignant cell in vitro and in vivo through and EBNA1-dependent mechanism. PNAS. 2010; 107(7):3146-3151. doi: https://doi.org/10.1073/pnas.0910717107.

SUN, X.; BRISTOL, J. A.; IWAHORI, S. et al. Hsp90 Inhibitor 17-DMAG Decreases Expression of Conserved Herpesvirus Protein Kinases and Reduces Virus Production in Epstein-Barr Virus-Infected Cells. Journal of Virology. 2013; 87(18):10126-10138. doi: 10.1128/JVI.01671-13.

SUN, X.; KENNEY, S. Hsp90 Inhibitors: A potential treatment for latent EBV infection?. Cell Cycle. 2010; 9(9):1665-1666. doi: 10.4161/cc.9.911594.

SUZUKI, M.; TAKEDA, T.; NAKAGAWA, H. et al. The heat shock 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Frontiers in Microbiology. 2015; 6(280):1-10. doi: 10.3389/fmicb.2015.00280.

SZABLOWSKI, J. O.; RASKATOV, J. A.; DERVAN, P. B. An HRE-binding Py-Im polyamide impairs hypoxic signaling in tumors. Mol Cancer Ther. 2016; 15(4): 608-617. doi: 10.1158/1535-7163.MCT-150719.

TRUMPFHELLER, C.; FINKE, J. S.; LÓPEZ, C. B. et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. Journal of Experimental of Medicine. 2006; 203(3):607-617. doi: 10.1084/jem.20052005.

Van den Bergh, J.; WILLEMEN, Y.; LION, E. et al. Transpresentation of interleukin-15 by IL-15/IL-15Rα mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity. Oncotarget. 2015; 6(42):44123-44133. doi: 10.18632/oncotarget.6536.

WANG, B.; ZAIDI, N.; HE, L. et al. Targeting of the non-mutated tumor antigen HER2/neu to mature dendritic cells induces an integrated immune response that protects against breast cancer in mice. Breast Cancer. 2012; 1-17. doi: 10.1186/bcr3135.

WESIERSKA-GADEK, J.; GRITSCH, D.; ZULEHNER, N. et al. Roscovitine, a Selective CDK Inhibitor, Reduces the Basal and Estrogen-Induced Phosphorylation of ER-α in Human ER-Positive Breast Cancer Cells. Journal of Cellular Biochemistry. 2011; 112:761-772. doi: 10.1002/jcb.23004.

WHITTAKER, S. R.; WALTON, M. I.; GARRETT, M. D. et al. The Cyclin-dependent Kinase Inhibitor CYC202 (R-Roscovitine) Inhibits Retinoblastoma Protein Phosphorylation, Causes Loss of Cyclin D1, and Activates the Mitogen-activated Protein Kinase Pathway. Cancer Research. 2004; 64:262-272. doi: 10.1158/0008-5472.can-03-0110.

WILLEMEN, Y.; Van den Bergh, J. M. J.; LION, E. et al. Engineering monocyte-derived dendritic cells to secrete interferon-α enhances their ability to promote adaptive and innate anti-tumor immune effector functions. Cancer Immunol Immunother. 2015; 831-842. doi: 10.1007/s00262-015-1688-2.

WILLEMEN, Y.; VERSTEVEN, M.; PEETERS, M. et al. Ribonucleic Acid Engineering of Dendritic Cells for Therapeutic Vaccination: Ready ‘N Able to Improve Clinical Outcome?. Cancers. 2020; 12:1-23. doi: 10.3390/cancers12020299.

WILLIAMS, T. A.; FARES, M. A. The Effect of Chaperonin Buffering on Protein Evolution. Genome Biology and Evolution. 2010; 2:609-619. doi: 10.1093/gbe/evq045.

WILSON, J. B.; MANET, E.; GRUFFAT, H. et al. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus-Associated Cancers. Cancers. 2018; 10(4):1-30. doi: 10.3390/cancers10040109.

YASUDA, A.; NOGUCHI, K.: MINOSHIMA, M. et al. DNA ligand designed to antagonize EBNA1 represses Epstein-Barr virus-induced immortalization. Cancer Science. 2011; 102(12):2221-2230. doi: 10.1111/j.1349-7006.2011.02098.x.

ZHAO, R.; DAVEY, M.; HSU, YA-CHIEH. et al. Navigating the Chaperona Network: An Integrative Map of Physical and Genetic Interactions Mediated by the Hsp90 Chaperone. Cell. 2005; 120:715-727. doi: 10.1016/j.cell.2004.12.024.

ZHU, E. F.; GAI, S. A.; OPEL, C. F. et al. Synergistic Innate and Adaptive Immune Response To Combination Immunotherapy with Anti-Tumor Antigen Antibodies and Extended Serum Half-Life IL-2. Cancer Cell. 2015; 27(4):489-501. doi: 10.1016/j.ccell.2015.03.004.




DOI: https://doi.org/10.34119/bjhrv4n5-176

Refbacks

  • There are currently no refbacks.