Inibidores de Ebna1 como alvos para terapias associadas a oncogênese do herpesvírus humano 4 / Ebna1 inhibitors as targets for therapies associated with oncogenesis of human herpesvirus 4

Authors

  • Marcos Daniel Mendes Padilha Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Ludmilla Ferreira Costa
  • Francisco Canindé Ferreira de Luna
  • Murilo Tavares Amorim
  • Clebson Pantoja Pimentel
  • Walter Felix Franco Neto
  • Jardel Fabio Lopes Ferreira
  • Gustavo Moraes Holanda

DOI:

https://doi.org/10.34119/bjhrv4n5-176

Keywords:

Antígenos nucleares EBV, Carcinoma nasofaríngeo, EBNA1, Inibidores de EBNA1

Abstract

Introdução: O  vírus Epstein-Barr (EBV) ou Herpesvírus Humano 4 (HHV-4) está associado ao carcinoma nasofaríngeo e diferentes malignidades em pacientes infectados, as taxas de mortalidade destacam a necessidade de pesquisas direcionadas a oncogênese causada pelo vírus. A proteína antígeno nuclear 1 (EBNA1) tem sido alvo de pesquisas pela função de latência e replicação durante o processo oncogênico e inibidores anti-EBNA1 e EBV estão sendo amplamente testados. Metodologia: Esta pesquisa é uma revisão sistemática descritiva, a plataforma de busca para análise dos artigos foi o NCBI e lista de referência dos artigos selecionados. Os termos considerados foram: Antígenos nucleares EBV, Carcinoma nasofaríngeo, EBNA1, Inibidores de EBNA1. Os artigos escolhidos obedeceram o ano de 1998 a 2020. Objetivos: Analisar possíveis inibidores de EBNA1 e EBV sobre oncogênese do HHV-4. Resultados e discussão: Roscovitina, Poliamidas, Inibidores de Hsp90, Compostos SC7,11 e 19 e Antígenos direcionados para CDs in vivo e ex vivo tiveram alta eficiência em modelos experimentais de células infectadas para possíveis terapias anti-EBV e EBNA1. Conclusão: As pesquisas no uso de inibidores EBNA1 e EBV apresentaram resultados promissores onde as células que foram expostas a infecção causaram redução da replicação e depleção de genomas EBV. Outra descoberta que potencializa uma cura para EBV e bloqueio da atividade de latência EBNA1 é o uso de terapias adjuvantes como os inibidores checkpoint

 

References

ANGUILLE, S.; SMITS, E. L.; LION, E. et al. Clinical use dendritic cells for cancer therapy. The Lancet Oncology. 2014; 15:e257-67. doi: 10.1016/S1470-2045(13)70585-0.

BONTKES, H. J.; KRAMER, D.; RUIZENDAAL, J. J. et al. Dendritic cells transfected with interleukin-12 and tumor-associated antigen messenger RNA induce high avidity cytotoxic T cells. Gene Therapy. 2006; 14:366-375. doi: 10.1038/sj.gt.3302874.

BONTKES, H. J.; KRAMER, D.; RUIZENDAAL, J. J. et al. Tumor associated antigen and interleukin-12 mRNA transfected dendritic cells enhance effector function of natural killer cells and antigen specific T-cells. Clinical Immunology. 2008; 127:375-384. doi: 10.1016/j.clim.2008.02.001.

CERBONI, S.; GENTILI, M.; MANEL, N. Diversity of pathogen sensors in dendritic cells. Adv Immunol. 2013; 120:211-237. doi: 10.1016/B978-0-12-417028-5.00008-9.

CHENOWETH, D. M.; DERVAN, P. B. Structural Basis for Cyclic Py-Im Polyamide Allosteric Inhibition of Nuclear Receptor Binding. Journal of the American Chemical Society. 2010; 132(41):14521-14529. doi: 10.1021/ja105068b.

CICENAS, J.; KALYAN, K.; SOROKINAS, A. et al. Roscovitine in Cancer and Other diseases. Annals of Translational Medicine. 2015; 3(10):1-12. doi: 10.3978/j.issn.2305-5839.2015.03.61.

COFFMAN, R. L.; SHER, A.; SEDER, R. A. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010; 33:492-503. doi: 10.1016/j.immuni.2010.10.002.

DERVAN, P. B.; EDELSON, B. S. Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Elsevier. 2003; 13(3):284-299. doi: 10.1016/S0959-440X(03)00081-2.

DEY, A.; WONG, E. T.; CHEOK, C. F. et al. R-Roscovitine simultaneously targets both the p53 and NF-kB pathways and causes potentiation of apoptosis: implications in cancer therapy. Cell Death and Differentiation. 2007; 15:263-273. doi: 10.1038/sj.cdd.4402257.

DHODAPKAR, M. V.; SZNOL, M.; ZHAO, M. et al. Induction of Antigen-Specific Immunity with Vaccine Targeting NY-ESO-1 to the Dendritic Cell Receptor DEC-205. Clinical Trial. 2014; 6(232):1-22. doi: 10.1126/scitranslmed.3008068.

DICKINSON, L. A.; GULIZIA, R. J.; TRAUGER, J. W. et al. Inhibition of RNA polymerase transcription in human cells by synthetic DNA-binding ligands. PNAS. 1998; 95(22):12890-12895. doi: 10.1073/pnas.95.22.12890.

DIKIC, I.; ELAZAR, Z. Mechanism and medical implications of mammalian autophagy. Nature Reviews Molecular Cell Biology. 2018; 19(6):349-364. doi: 10. 1038/s41580-018-0003-4.

DUELLMAN, S. J.; THOMPSON, K. L.; COON, J. J. et al. Phosphorylation sites of Epstein-Barr virus EBNA1 regulate its function. J Gen Virol. 2009; 90:2251-2259. doi: 10.1099/vir.0.012260-0.

ECHEVERRÍA, P. C.; BERNTHALER, A.; DUPUIS, P. et al. An Interaction Network Predicted from Public Data as a Discovery Tool: Application to the Hsp90 Molecular Chaperone Machine. Plos One. 2011; 6(10):e26044. doi: 10.1371/journal.pone.0026044.

EL-SHARKAWY, A.; ZAIDAN, L. A.; MALKI, A. Epstein-Barr Virus-Associated Malignancies: Roles of Viral Oncoproteins in Carcinogenesis. Frontiers in Oncology. 2018; 8(265):1-13. doi: 10.3389/fonc.2018.00265.

GALLUCI, S.; MATZINGER, P. Danger signals: SOS to the immune system. Curr Opin Immunol. 2001; 13(1):114-119. doi: 10.1016/s0952-7915(00)00191-6.

GANAPATHI, S. B.; KESTER, M.; ELMSLIE, K. S. State-dependent block of HERG potassium channels by R-roscovitine: implications for cancer therapy. American Journal of Physiology Cell Physiology. 2009; 296(4):C701-C710. doi: 10.1152/ajpcell.00633.2008.

GARG, A. D.; PEREZ, M. V.; SCHAAF, M. et al. Tria watch: Dendritic cell-based anticancer immunotherapy. Oncoimmunology. 2017; 6(7):e1328341. doi: 10.1080/2162402X.2017.1328341.

GARG, G.; KHANDELWAL, A.; BLAGG, B. S. J. Anticancer Inhibitors of Hsp90 Function: Beyonde the Usual Suspects. Adv Cancer Res. 2016; 129:51-88. doi: 10.1016/bs.acr.2015.12.001.

GARY, C.; HAJEK, M.; BIKTASOVA, A. et al. Selective antitumor activity of roscovitine in head and neck cancer. Oncotarget. 2016; 7(25):38598-38611. doi: 10.18632/oncotarget.9560.

GIANTI, E.; MESSICK, T. E.; LIEBERMAN, P. M.; ZAUHAR, R. Computational analysis of EBNA1 “druggability” suggests novel insights for Epstein-Barr virus inhibitor design. J Comput Aided Mol Des. 2016; 30(4):285-303. doi: 10.1007/s10822-016-9899-y.

GURER, C.; STROWIG, T.; BRILOT, F. et al. Targeting the nuclear antigen 1 of Epstein-Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses. Blood. 2008; 112(4):1231-1239. doi: 10.1182/blood-2008-03-148072.

HAU, M. P.; LUNG, H. L.; WU, M. et al. Targeting Epstein-Barr Virus in Nasopharyngeal Carcinoma. Frontiers in Oncology. 2020; 10(600):1-18. doi: 10.3389/fonc.2020.00600.

HAWIGER, D.; INABA, K.; DORSETT, Y. et al. Dendritic Cells Induce Peripheral T Cell Unresponsiveness Under Steady State Conditions In Vivo. J. Exp. Med. 2001; 194(6):769-780. doi: 10.1084/jem.194.6.769.

HERMANS, I. F.; SILK, J. D.; GILEADI, U. et al. NK Cells Enhance CD4+ and CD8+ Response To Soluble Antigen In Vivo through Direct Interaction with Dendritic Cells. The Journal of Immunology. 2003; 171(10):5140-5147. doi: 10.40409/jimmunol.171.10.5140.

JIANG, L.; XIE, C.; LUNG, H. L. et al. EBNA1-targeted inhibitors: Novel approaches for the treatment of Epstein-Barr virus-associated cancers. Theranostics. 2018; 8(19):5307-5319. doi: 10.7150/thno.26823.

KANG, J. S.; DERVAN, P. B. A sequence-specific binding small molecule triggers the release of immunogenic signals and phagocytosis in a model of B-cell lymphoma. Q Rev Biophys. 2015; 48(4):1-20. doi: 10.1017/S0033583515000104.

KRETSCHMER, K.; APOSTOLOU, I.; HAWIGER, D. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nature Immunology. 2005; 6(12):1219-1227. doi: 10.1038/ni1265.

LEONHARTSBERGER, N.; RAMONER, R.; FALKENSAMMER, C. et al. Quality of life during dendritic cell vaccination against metastatic renal cell carcinoma. Cancer Immunol Immunother. 2012; 61:1407-1413. doi: 10.1007/s00262-012-1207-7.

LI, N.; THOMPSON, S.; SCHULTZ, D. C. et al. Discovery of Selective Inhibitors Against EBNA1 via High Throughput In Silico Virtual Screening. Plos One. 2010; 5(4):e10126. doi: 10.1371/journal.pone.0010126.

MAHNKE, K.; GUO, M.; LEE, S. et al. The Dendritic Cell Receptor for Endocytosis, DEC-205, Can Recycle and Enhance Antigen Presentation via Major Histocompatibility Complex Class II-Positive Lysosomal Compartments. The Journal of Cell Biology. 2000; 151(3):673-684. doi: 10.1083/jcb.151.3.673.

MASTELIC-GAVILLET, B.; BALINT, K.; BOUDOUSQUIE, C. et al. Personalized Dendritic Cell Vaccines - Recent Breakthroughs and Encouraging Clinical Results. Frontiers in Immunology. 2019; 10(766):1-10. doi: 10.3389/fimmu.2019.00766.

MOHAPATRA, S.; CHU, B.; WEI, S. et al. Roscovitine Inhibits STAT5 Activity and Induces Apoptosis in the Human Leukemia Virus Type 1-Transformed Cell Line MT-2. Cancer Research. 2003; 63:8523-8530. PMID: 14679020.

MORALES-SÁNCHEZ, A.; FUENTES-PANANÁ, E. M. Human Viruses and Cancer. Viruses. 2014; 6:4047-4079. doi: 10.3390/v6104047.

MUI, U. N.; HALEY, C. T.; TYRING, S. K. Viral Oncology: Molecular Biology and Pathogenesis. 2017; 6(111):1-58. doi: 10.3390/jcm6120111.

MUNZ, C. Autophagy Beyond Intracellular MHC Class II Antigen Presentation. Trends in Immunology. 2016; 37(11):755-763. doi: 10.1016/j.it.2016.08.017.

NECKRES, L.; NECKERES, K. Heat-shock protein 90 inhibitors as novel cancer chemotherapeutic agents. Expert Opinion On Emerging Drugs. 2002; 7(2):277-288. doi: 10.1517/14728214.7.2.277.

O’KEEFFE, M.; MOK, W. H.; RADFORD, K. J. Human dendritic cell subsets and function in health and disease. Cellular and Molecular Life Sciences. 2015; 71(22):4309-4325. doi: 10.1007/s00018-015-2005-0.

O’NEILL, D.; BHARDWAJ, N. Generation of Autologous Peptide- and Protein- Pulsed Dendritic Cell for Patient-Specific Immunotherapy. Methods in Molecular Medicine. 2005; 109:97-112. doi: 10.1385/1-59259-862-5:097.

PALUCKA, K.; BANCHEREAU, J. Diversity and collaboration for effective immunotherapy. Nature Medicine. 2016; 22(12):1390-1391. doi: 10.1038/nm.4249.

PAPRSKAROVA, M.; KRYSTOF, V.; JORDA, R. et al. Functional p53 in Cells Contributes to the Anticancer Effect of the Cyclin-Dependent Kinase Inhibitor Roscovitine. Journal of Cellular Biochemistry. 2009; 107:428-437. doi: 10.1002/jcb.22139.

PARDO, L. A.; CONTRERAS-JURADO, C.; ZIENTKOWSKA, M. et al. Role of Voltage-gated Potassium Channels in Cancer. The Journal of Membrane Biology. 2005; 205(3):115-124. doi: 10.1007/s00232-005-0776-1.

PETZOLD, C.; SCHALLENBERG, S.; STERN, J. N. H. et al. Target Antigen Delivery to DEC-205+ Dendritic Cells for Tolerogenic Vaccination. The Review of Diabetic Studies. 2012; 9(4):305-318. doi: 10.1900/RDS.2012.9.305.

RASKATOV, J. A.; HARGROVE, A. E.; SO, A. Y. et al. Pharmacokinetics of Py-Im Polyamides Depend on Architecture: Cyclic versus Linear. J Am Chem Soc. 2012b; 134(18):7995-7999. doi: 10.1021/ja302588v.

RASKATOV, J. A.; NICKOLS, N. G.; HARGROVE, A. E. et al. Gene expression changes in a tumor xenograft by a pyrrole-imidazole polyamide. PNAS. 2012a; 109(40):16041-16045. doi: 10.1073/pnas.1214267109.

RAYNAUD, F. I.; WHITTAKER, S. R.; FISCHER, P. M. et al. In vitro and In vivo Pharmacokinetic-Pharmacodynamic Relationships for the Trisubstituted Aminopurine Cyclin-Dependent Kinase Inhibitors Olomoucine, Bohemine and CYC202. Cancer Therapy: Preclinical. 2005; 11(13):4875-4887. doi: 10.1158/1078-0432.CCR-04-2264.

RUTHERFORD, S. L.; LINDQUIST, S. Hsp90 as a capacitor for morphological evolution. Nature. 1998; 396(6709):336-342. doi: 10.1038/24550.

SANTOS, P. M.; BUTTERFIELD, L. H. Dendritic Cell-Based Cancer Vaccines. J Immunol. 2018; 200(2):1-18. doi: 10.4049/jimmunol1701024.

SHARMA, A.; KOLDOVSKY, U.; XU, S. et al. HER-2 Pulsed Dendritic Cell Vaccine Can Eliminate HER-2 Expression and Impact Ductal Carcinoma In Situ. Cancer. 2011; 1-9. doi: 10.1002/cncr.26734.

SHATZER, A.; ALI, M. A.; CHAVEZ, M. et al. Ganetespib, an HSP90 inhibitor, kills Epstein-Barr virus (EBV) infected B and T cells and reduces the percentage of EBV-infected cells in the blood. Leuk Lymphoma. 2017; 58(4):1-15. doi: 10.1080/10428194.2016.1213823.

SOARES, H.; WAECHTER, H.; GLAICHENHAUS, N. et al. A subset of dendritic cells induces CD4+ T cells to produce IFN-? by an IL-12-independent but CD70-dependent mechanism in vivo. The Journal of Experimental Medicine. 2007; 204(5):1095-1106. doi: 10.1084/jem.20070176.

SPROOTEN, J.; CEUSTERS, J.; COOSEMANS, A. et al. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology. 2019; 8(11):e1638212. doi: 10.1080/2162402X.2019.1638212.

SUN, X.; BARLOW, E. A.; MA, S. et al. Hsp90 inhibitors block outgrowth of EBV-infected malignant cell in vitro and in vivo through and EBNA1-dependent mechanism. PNAS. 2010; 107(7):3146-3151. doi: https://doi.org/10.1073/pnas.0910717107.

SUN, X.; BRISTOL, J. A.; IWAHORI, S. et al. Hsp90 Inhibitor 17-DMAG Decreases Expression of Conserved Herpesvirus Protein Kinases and Reduces Virus Production in Epstein-Barr Virus-Infected Cells. Journal of Virology. 2013; 87(18):10126-10138. doi: 10.1128/JVI.01671-13.

SUN, X.; KENNEY, S. Hsp90 Inhibitors: A potential treatment for latent EBV infection?. Cell Cycle. 2010; 9(9):1665-1666. doi: 10.4161/cc.9.911594.

SUZUKI, M.; TAKEDA, T.; NAKAGAWA, H. et al. The heat shock 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Frontiers in Microbiology. 2015; 6(280):1-10. doi: 10.3389/fmicb.2015.00280.

SZABLOWSKI, J. O.; RASKATOV, J. A.; DERVAN, P. B. An HRE-binding Py-Im polyamide impairs hypoxic signaling in tumors. Mol Cancer Ther. 2016; 15(4): 608-617. doi: 10.1158/1535-7163.MCT-150719.

TRUMPFHELLER, C.; FINKE, J. S.; LÓPEZ, C. B. et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. Journal of Experimental of Medicine. 2006; 203(3):607-617. doi: 10.1084/jem.20052005.

Van den Bergh, J.; WILLEMEN, Y.; LION, E. et al. Transpresentation of interleukin-15 by IL-15/IL-15R? mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity. Oncotarget. 2015; 6(42):44123-44133. doi: 10.18632/oncotarget.6536.

WANG, B.; ZAIDI, N.; HE, L. et al. Targeting of the non-mutated tumor antigen HER2/neu to mature dendritic cells induces an integrated immune response that protects against breast cancer in mice. Breast Cancer. 2012; 1-17. doi: 10.1186/bcr3135.

WESIERSKA-GADEK, J.; GRITSCH, D.; ZULEHNER, N. et al. Roscovitine, a Selective CDK Inhibitor, Reduces the Basal and Estrogen-Induced Phosphorylation of ER-? in Human ER-Positive Breast Cancer Cells. Journal of Cellular Biochemistry. 2011; 112:761-772. doi: 10.1002/jcb.23004.

WHITTAKER, S. R.; WALTON, M. I.; GARRETT, M. D. et al. The Cyclin-dependent Kinase Inhibitor CYC202 (R-Roscovitine) Inhibits Retinoblastoma Protein Phosphorylation, Causes Loss of Cyclin D1, and Activates the Mitogen-activated Protein Kinase Pathway. Cancer Research. 2004; 64:262-272. doi: 10.1158/0008-5472.can-03-0110.

WILLEMEN, Y.; Van den Bergh, J. M. J.; LION, E. et al. Engineering monocyte-derived dendritic cells to secrete interferon-? enhances their ability to promote adaptive and innate anti-tumor immune effector functions. Cancer Immunol Immunother. 2015; 831-842. doi: 10.1007/s00262-015-1688-2.

WILLEMEN, Y.; VERSTEVEN, M.; PEETERS, M. et al. Ribonucleic Acid Engineering of Dendritic Cells for Therapeutic Vaccination: Ready ‘N Able to Improve Clinical Outcome?. Cancers. 2020; 12:1-23. doi: 10.3390/cancers12020299.

WILLIAMS, T. A.; FARES, M. A. The Effect of Chaperonin Buffering on Protein Evolution. Genome Biology and Evolution. 2010; 2:609-619. doi: 10.1093/gbe/evq045.

WILSON, J. B.; MANET, E.; GRUFFAT, H. et al. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus-Associated Cancers. Cancers. 2018; 10(4):1-30. doi: 10.3390/cancers10040109.

YASUDA, A.; NOGUCHI, K.: MINOSHIMA, M. et al. DNA ligand designed to antagonize EBNA1 represses Epstein-Barr virus-induced immortalization. Cancer Science. 2011; 102(12):2221-2230. doi: 10.1111/j.1349-7006.2011.02098.x.

ZHAO, R.; DAVEY, M.; HSU, YA-CHIEH. et al. Navigating the Chaperona Network: An Integrative Map of Physical and Genetic Interactions Mediated by the Hsp90 Chaperone. Cell. 2005; 120:715-727. doi: 10.1016/j.cell.2004.12.024.

ZHU, E. F.; GAI, S. A.; OPEL, C. F. et al. Synergistic Innate and Adaptive Immune Response To Combination Immunotherapy with Anti-Tumor Antigen Antibodies and Extended Serum Half-Life IL-2. Cancer Cell. 2015; 27(4):489-501. doi: 10.1016/j.ccell.2015.03.004.

Published

2021-10-04

How to Cite

PADILHA, M. D. M.; COSTA, L. F.; DE LUNA, F. C. F.; AMORIM, M. T.; PIMENTEL, C. P.; NETO, W. F. F.; FERREIRA, J. F. L.; HOLANDA, G. M. Inibidores de Ebna1 como alvos para terapias associadas a oncogênese do herpesvírus humano 4 / Ebna1 inhibitors as targets for therapies associated with oncogenesis of human herpesvirus 4. Brazilian Journal of Health Review, [S. l.], v. 4, n. 5, p. 20685–20703, 2021. DOI: 10.34119/bjhrv4n5-176. Disponível em: https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/36880. Acesso em: 29 mar. 2024.

Issue

Section

Original Papers