Papel do estresse oxidativo na etiologia da esquizofrenia: revisão sistemática / Role of oxidative stress in the etiology of schizophrenia: systematic review

Joaquim Maria Ferreira Antunes Neto, Ana Maria Nalesso

Abstract


Pessoas com esquizofrenia e outras psicoses apresentam aumento do estado pró-oxidativo. No entanto, há controvérsias ao considerar estudos que avaliaram especificamente os marcadores de estresse oxidativo no primeiro episódio psicótico. No presente artigo, utilizou-se os “Principais Itens para Relatar Revisões Sistemáticas e Meta-análises” (PRISMA) na condução do levantamento literário para detectar estudos comparando marcadores de estresse oxidativo em pacientes com primeiro episódio de psicose (FEP = first-episode psychosis) e sujeitos controles saudáveis (HC = healthy control). Vinte e quatro estudos foram obtidos para inclusão nesta revisão sistemática, compreendendo uma amostra geral de 448 sujeitos (catalase, CAT; 08 estudos), 1347 sujeitos (superóxido dismutase, SOD; 18 estudos), 554 sujeitos (glutationa peroxidase, GPx; 12 estudos), 252 sujeitos (glutationa, GSH; 07 estudos) e 962 sujeitos (peroxidação lipídica; 15 estudos) em FEP e 416 sujeitos (CAT), 1333 sujeitos (SOD), 583 (GPx), 262 sujeitos (GSH) e 1048 sujeitos (peroxidação lipídica) em HC. Por análise das diferenças padronizadas das médias, observou-se queda das atividades das enzimas antioxidantes (CAT, SOD e GPx) e da concentração do parâmetro antioxidante não enzimático (GSH), com aumento dos níveis de peroxidação lipídica no grupo FEP em comparação ao grupo HC, sugerindo a instalação de um quadro de estresse oxidativo nesta população. Desta forma, o impacto do estresse oxidativo deve ser considerado para o entendimento da etiologia e estratégia de desencadeamento da manifestação dos primeiros episódios psicóticos/esquizofrênicos.


Keywords


Esquizofrenia, Primeiro Episódio Psicótico, Estresse Oxidativo, Revisão Sistemática.

References


AGUILAR-VALLES, A.; JUNG, S.; POOLE, S.; FLORES, C.; LUHESHI, G.N. Leptin and interleukin-6 alter the function of mesolimbic dopamine neurons in a rodent model of prenatal inflammation. Psychoneuroendocrinology, v. 37, n. 7, p. 956–969, 2012. Disponível em: https://doi.org/10.1016/j.psyneuen.2011.11.003

AL-CHALABI, B.M.; THANOON, I.A.; AHMED, F.A. Potential effect of olanzapine on total antioxidant status and lipid peroxidation in schizophrenic patients. Neuropsychobiol., v. 59, n. 1, p. 8-11, 2009. Disponível em: https://doi.org/10.1159/000202823

ANTUNES NETO, J.M.F. Síndrome metabólica: caminhado pelo vale da morte. São Paulo: Artexpressa, 2019.

ANTUNES-NETO, J.M.F.; TOYAMA, M.H.; CARNEIRO, E.M.; BOSCHERO, A.C.; PEREIRA-DA-SILVA, L.; MACEDO, D.V. Circulating leukocyte heat shock protein 70 (HSP70) and oxidative stress markers in rats after a bout of exhaustive exercise. Stress, v. 09, n. 02, p. 107-115, 2006. Disponível em: https://doi.org/10.1080/10253890600772211

BAI, Z. L.; LI, X. S.; CHEN, G. Y.; DU, Y.; WEI, Z. X.; CHEN, X.; ZHENG, G. E.; DENG, W.; CHENG, Y. Serum oxidative stress marker levels in unmedicated and medicated patients with schizophrenia. J. Mol. Neurosci., v. 66, n. 3, p. 428-436, 2018. Disponível em: http://doi10.1007/s12031-018-1165-4

BOLISETTY, S.; JAIMES, E.A. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int. J. Mol. Sci., v. 14, n. 3, p. 6306-6344, 2013. Disponível em: https://doi.org/10.3390/ijms14036306

BROWN, A.S.; DERKITS, E.J. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am. J. Psychiatry, v. 167, n. 3, p. 261–280, 2010. Disponível em: https://doi.org/10.1176/appi.ajp.2009.09030361

CAMKURT, M.A.; FINDIKLI, E.; İZCI, F.; KURUTAŞ, E.B.; TUMAN, T.C. Evaluation of malondialdehyde, superoxide dismutase and catalase activity and their diagnostic value in drug naïve, first episode, non-smoker major depression patients and healthy controls. Psychiatry Res., v. 238, p. 81-85, 2016. Disponível em: https://doi.org/10.1016/j.psychres.2016.01.075

COLLIN, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci., v. 20, n. 10, 2407, 2019. Disponível em: https://doi.org/10.3390/ijms20102407

DAS, K.; ROYCHOUDHURY, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci., v. 2, artigo 53, 2014. Disponível em: https://doi.org/10.3389/fenvs.2014.00053

FORNI, C.; FACCHIANO, F.; BARTOLI, M.; PIERETTI, S.; FACCHIANO, A.; D’ARCANGELO, D.; NORELLI, S.; VALLE, G.; NISINI, R.; BENINATI, S.; TABOLACCI, C.; JADEJA, R.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed. Res. Int., v. 7, 8748255, 2019. Disponível em: https://doi.org/10.1155/2019/8748253

HE, Q.; YOU, Y.; YU, L.; YAO, L.; LU, H.; ZHOU, X.; WU, S.; CHEN, L.; CHEN, Y.; ZHAO, X. Uric acid levels in subjects with schizophrenia: a systematic review and meta-analysis. Psychiatry Res., v. 292, 113305, 2020. Disponível em: https://doi.org/10.1016/j.psychres.2020.113305

HERKEN, H.; UZ, E.; OZYURT, H.; SÖĞÜT, S.; VIRIT, O.; AKYOL, O. Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia. Mol. Psych., v. 6, n. 1, p. 66-73, 2001. Disponível em: https://doi.org/10.1038/sj.mp.4000789

HUANG, D.; LIU, S. Oxidative stress and schizophrenia. J. Psychiatry Brain Sci., v. 2, n. 2, artigo 4, 2017. Disponível em: https://doi.org/10.20900/jpbs.20170006

JORDAN, W.; DOBROWOLNY, H.; BAHN, S.; BERNSTEIN, H. G.; BRIGADSKI, T.; FRODL, T.; ISERMANN, B.; LESSMANN, V.; PILZ, J.; RODENBECK, A.; SCHILTZ, K.; SCHWEDHELM, E.; TUMANI, H.; WILTFANG, J.; GUEST, P. C.; STEINER, J. Oxidative stress in drug-naïve first episode patients with schizophrenia and major depression: effects of disease acuity and potential confounders. Eur. Arch. Psychiatry Clin. Neurosci., v. 268, p.129-143, 2018. Disponível em: https://doi.org/10.1007/s00406-016-0749-7

KAHN, R.S.; SOMMER, I.E. The neurobiology and treatment of first-episode schizophrenia. Mol. Psychiatry, v. 20, n. 1, p. 84-97, 2015. Disponível em: https://doi.org/10.1038/mp.2014.66

KARTALCI, S.; KARABULUT, A.B.; OZCAN, A.C.; PORGALI, E.; UNAL, S. Acute and chronic effects of electroconvulsive treatment on oxidative parameters in schizophrenia patients. Prog. Neuropsychopharmacol. Biol. Psychiatry, v. 35, n. 7, p. 1689-1694, 2011. Disponível em: https://doi.org/10.1016/j.pnpbp.2011.05.007

KAWAMURA, T.; MURAOKA, I. Exercise–induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants (Basel)., v. 7, n. 9, 119, 2018. Disponível em: https://doi.org/10.3390/antiox7090119

KENK, M.; SELVANATHAN, T.; RAO, N.; SURIDJAN, I.; RUSJAN, P.; REMINGTON, G.; MEYER, J.H.; WILSON, A.A.; HOULE, S.; MIZRAHI, R. Imaging neuroinflammation in gray and white matter in schizophrenia: an in-vivo PET study with [18F]-FEPPA. Schizophr. Bull., v. 41, n. 1, p. 85–93, 2015. Disponível em: https://doi.org/10.1093/schbul/sbu157

KHAN, M.M.; EVANS, D.R.; GUNNA, V.; SCHEFFER, R.E.; PARIKH, V.V.; MAHADIK, S.P. Reduced erythrocyte membrane essential fatty acids and increased lipid peroxides in schizophrenia at the never-medicated first-episode of psychosis and after years of treatment with antipsychotics. Schizophr. Res., v. 58, n. 1., p. 1-10, 2012. Disponível em: https://doi.org/10.1016/s0920-9964(01)00334-6.

KHANDAKER, G.M.; COUSINS, L.; DEAKIN, J.; LENNOX, B.R.; YOLKEN, R.; JONES, P.B. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry, v. 2, n. 3, p. 258–270, 2015. Disponível em: https://doi.org/10.1016/s2215-0366(14)00122-9

KIM, G.H.; KIM, J.E.; RHIE, S.J.; YOON, S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol., v. 24, n. 4, p. 325-340, 2015. Disponível em: https://dx.doi.org/10.5607%2Fen.2015.24.4.325

LANG, X.E.; WANG, D.M.; DUD, X.D.; JIA, Q.F.; CHEN, D.C.; XIU, M.; WANG, L.; ZHANG, X.Y. Elevated activity of plasma superoxide dismutase in never-treated firstepisode schizophrenia patients: Associated with depressive symptoms. Schizophr. Res., v. 222, p. 291-296, 2020. Disponível em: https://doi.org/10.1016/j.schres.2020.05.032

LANGBEIN, K.; HESSE, J.; GUSSEW, A.; MILLEIT, B.; LAVOIE, S.; AMMINGER, G. P.; GASER, C.; WAGNER, G.; REICHENBACH, J. R.; HIPLER, U. C.; WINTER, D.; SMESNY, S. Disturbed glutathione antioxidative defense is associated with structural brain changes in neuroleptic-naïve first-episode psychosis patients. Prostaglandins Leukot. Essent. Fatty Acids, v.136, p.103-110, 2018. Disponível em: https://doi.org/10.1016/j.plefa.2017.10.005

LU, J.; WANG, Z.; CAO, J.; CHEN, Y.; DONG, Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol., v. 16, n. 1, 80, 2016. Disponível em: https://doi.org/10.1186/s12958-018-0391-5

MADIREDDY, S.; MADIREDDY, S. Regulation of reactive oxygen species-mediated damage in the pathogenesis of schizophrenia. Brain Sci., v. 10, n. 10, artigo 742, 2020. Disponível em: https://dx.doi.org/10.3390%2Fbrainsci10100742

MADIREDDY, S.; MADIREDDY, S. Protection from the pathogenesis of neurodegenerative disorders, including alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s diseases, through the mitigation of reactive oxygen species. J. Neurosci. Neurol. Disord., v. 3, p. 148-161, 2019. Disponível em: http://dx.doi.org/10.29328/journal.jnnd.1001026

MAHADIK, S.P.; MUKHERJEE, S.; SCHEFFER, R.; CORRENTI, E.; MAHADIK, J.S. Elevated plasma lipid peroxides at the onset of nonaffective psychosis. Biol. Psychiatry., v. 43, n. 9, p. 674-679, 1998. Disponível em: https://doi.org/10.1016/s0006-3223(97)00282-5

MAHER, C.G.; SHERRINGTON, C.; HERBERT, R.D.; MOSELEY, A.M.; ELKINS, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther., v. 83, n. 8, p. 713–721, 2003. Disponível em: https://doi.org/10.1093/ptj/83.8.713

MARTÍNEZ-CENGOTITABENGOA, M.; MAC-DOWELL, K.S.; LEZA, J.C.; MICÓ, J.A.; FERNANDEZ, M.; ECHEVARRÍA, E.; SANJUAN, J.; ELORZA, J.; GONZÁLEZ-PINTO, A. Cognitive impairment is related to oxidative stress and chemokine levels in first psychotic episodes. Schizophr. Res., v. 137, n. 1-3, p. 66-72, 2012. Disponível em: https://doi.org/10.1016/j.schres.2012.03.004

MICO, J.A.; ROJAS-CORRALES, M.O.; GIBERT-RAHOLA, J.; PARELLADA, M.; MORENO, D.; FRAGUAS, D.; GRAELL, M.; GIL, J.; IRAZUSTA, J.; CASTRO-FORNIELES, J.; SOUTULLO, C.; ARANGO, C.; OTERO, S.; NAVARRO, A.; BAEZA, I.; MARTINEZ-CENGOTITABENGOA, M.; GONZALEZ-PINTO, A. Reduced antioxidante defense in early onset first-episode psychosis: a case-control study. BMC Psychiatry, v. 11, n. 1, artigo 26, 2011. Disponível em: https://doi.org/10.1186/1471-244x-11-26

MILJEVIĆ, Č. D.; NIKOLIĆ-KOKIĆ, A.; BLAGOJEVIĆ, D.; MILOVANOVIĆ, M.; MUNJIZA, A.; JUKIĆ, M. M.; PEŠIĆ, V.; LEČIĆ-TOŠEVSKI, D.; SPASIĆ, M. B. Association between neurological soft signs and antioxidant enzyme activity in schizophrenic patients. J. Psychiatr. Res., v. 269, p. 746-752, 2018. Disponível em: https://doi.org/10.1016/j.psychres.2018.09.009

MONICZEWSKI, A.; GAWLIK, M.; SMAGA, I.; NIEDZIELSKA, E.; KRZEK, J.; PRZEGALIŃSKI, E.; PERA, J.; FILIP, M. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 1. Chemical aspects and biological sources of oxidative stress in the brain. Pharmacol Rep., v. 67, n. 3, p.560-568, 2015. Disponível em: https://doi.org/10.1016/j.pharep.2014.12.014

MULLER, N. Immunology of schizophrenia. Neuroimmunomodulation, v. 21, n. 2-3, p. 109–116, 2014. Disponível em: https://doi.org/10.1159/000356538

MUKHERJEE, S.; MAHADIK, S.P.; SCHEFFER, R.; CORRENTI, E.E.; KELKAR, H. Impaired antioxidant defense at the onset of psychosis. Schizophr. Res.; v. 19, n. 1, p. 19-26, 1996. Disponível em: https://doi.org/10.1016/0920-9964(95)00048-8

NOTO, C.; OTA, V. K.; GADELHA, A.; NOTO, M. N.; BARBOSA, D. S.; BONIFÁCIO, K. L.; NUNES, S. O.; CORDEIRO, Q.; BELANGERO, S. I.; BRESSAN, R. A.; MAES, M.; BRIETZKE, E. Oxidative stress in drug naïve first episode psychosis and antioxidant effects of risperidone. J. Psychiatr. Res., v. 68, p.210-216, 2015. Disponível em: https://doi.org/10.1016/j.jpsychires.2015.07.003

OZORNINA, N.V.; OZORNIN, A.S.; GOVORIN, N.V. Possible pathophysiological mechanisms of changes in several cytokines and in the lipid peroxidation and antioxidant defense system in first episode schizophrenia patients. Neurochem. J., v. 7, n. 3, p. 230-233, 2013. Disponível em: http://dx.doi.org/10.1134%2FS1819712413030112

PARELLADA, M.; MORENO, C.; MAC-DOWELL, K.; LEZA, J.C.; GIRALDEZ, M.; BAILÓN, V.; CASTRO, MIRANDA-AZPIAZU, P.; FRAGUAS, D.; ARANGO, C. Plasma antioxidant capacity is reduced in Asperger syndrome. J. Psychiatr. Res., v. 46, n. 3, p. 394-401, 2012. Disponível em: https://doi.org/10.1016/j.jpsychires.2011.10.004

PIZZINO, G.; IRRERA, N.; CUCINOTTA, M.; PALLIO, G.; MANNINO, F.; ARCORACI, V.; SQUADRITO, F.; ALTAVILLA, D.; BITTO, A. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev., 8416763, 2017. Disponível em: https://dx.doi.org/10.1155%2F2017%2F8416763

RADONJIC, N.V.; KNEZEVIĆ, I.D.; VILIMANOVICH, U.; KRAVIĆ-STEVOVIĆ, T.; MARINA, L.V.; NIKOLIĆ, T.; TODOROVIĆ, V.; BUMBASIREVIĆ, V.; PETRONIJEVIĆ, N.D. Decreased glutathione levels and altered antioxidant defense in an animal model of schizophrenia: long-term effects of perinatal phencyclidine administration. Neuropharmacol., v. 58, n. 4-5, p. 739-745, 2010. Disponível em: https://doi.org/10.1016/j.neuropharm.2009.12.009

RAFFA, M.; ATIG, F.; MHALLA, A.; KERKENI, A.; MECHRI, A. Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry. v. 11, p.124, 2011. Disponível em: https://doi.org/10.1186/1471-244X-11-124

REYAZUDDIN, M.; AZMI, S. A.; ISLAM, N.; RIZVI, A. Oxidative stress and level of antioxidant enzymes in drug-naive schizophrenics. Indian J. Psychiatry. v. 56, n. 4, p. 344-349, 2014. Disponível em: https://doi.org/10.4103/0019-5545.146516

REYES-MADRIGAL, F.; LEÓN-ORTIZ, P.; MAO, X.; MORA-DURÁN, R.; SHUNGU, D. C.; DE LA FUENTE-SANDOVAL, C. Striatal glutathione in first-episode psychosis patients measured in vivo with proton magnetic resonance spectroscopy. Arch. Med. Res., v. 50, n. 4, p. 207-213, 2019. Disponível em: https://doi.org/10.1016/j.arcmed.2019.08.003

SARANDOL, A.; SARANDOL, E.; ACIKGOZ, H. E.; EKER, S. S.; AKKAYA, C.; DIRICAN, M. First-episode psychosis is associated with oxidative stress: Effects of short-term antipsychotic treatment. Psychiatry Clin. Neurosci. v.69, p. 699-707, 2015. Disponível em:

ŞIMŞEK, Ş.; GENÇOĞLAN, S.; YÜKSEL, T.; KAPLAN, İ.; ALACA, R.; AKTAŞ, H. Oxidative stress and DNA damage in untreated first-episode psychosis in adolescents. Neuropsychobiology. v.73, n. 2, p. 92-97, 2016. Disponível em: https://doi.org/10.1159/000444488

SINGH, A.; KUKRETI, R.; SASO, L.; KUKRETI, S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules, v. 24, n. 8, 1583, 2019. Disponível em: https://doi.org/10.3390/molecules24081583

SONG, X.; FAN, X.; LI, X.; ZHANG, W.; GAO, J.; ZHAO, J.; HARRINGTON, A.; ZIEDONIS, D.; LV, L. Changes in pro-inflammatory cytokines and body weight during 6-month risperidone treatment in drug naive, first-episode schizophrenia. Psychopharmacology (Berl), v. 231, n. 2, p. 319–325, 2014. Disponível em: https://doi.org/10.1007/s00213-013-3382-4

STOLP, H.B. Neuropoietic cytokines in normal brain development and neurodevelopmental disorders. Mol. Cell. Neurosci., v. 53, p. 63–68, 2013. Disponível em: https://doi.org/10.1016/j.mcn.2012.08.009

WANG, D.M.; CHEN, D.C.; WANG, L.; ZHANG, X.Y. Sex differences in the association between symptoms and superoxide dismutase in patients with never-treated first-episode schizophrenia. World J. Biol. Psychiatry, v. 22, n. 5, p. 325-334, 2021. Disponível em: https://doi.org/10.1080/15622975.2020.1805510

WU, Z.; ZHANG, X. Y.; WANG, H.; TANG, W.; XIA, Y.; ZHANG, F.; LIU, J.; FU, Y.; HU, J.; CHEN, Y.; LIU, L.; CHEN, D. C.; XIU, M. H.; KOSTEN, T. R.; HE, J. Elevated plasma superoxide dismutase in first-episode and drug naive patients with schizophrenia: inverse association with positive symptoms. Progr. Neuropsychopharmacol. Biol. Psychiatry, v. 36, n. 1, p. 34-38, 2012. Disponível em: https://doi.org/10.1016/j.pnpbp.2011.08.018

XIU, M.H.; LI, Z.; CHEN, D.C.; CHEN, S.; CURBO, M.E.; WU, H.E.; TONG, Y.S.; TAN, S.P.; ZHANG, W.Y. Interrelationships between BDNF, superoxide dismutase, and cognitive impairment in drug-naive first-episode patients with schizophrenia. Schizophr. Bull., v. 46, n. 6, p. 1498-1510, 2020. Disponível em: https://doi.org/10.1093/schbul/sbaa062

YAO, J.K.; LEONARD, S.; REDDY, R.D. Increased nitric oxide radicals in postmortem brain from patients with schizophrenia. Schizophr. Bull., v. 30, n. 4, p. 923-934, 2004. Disponível em: https://doi.org/10.1093/oxfordjournals.schbul.a007142

ZHU, S.; ZHAO, L.; FAN, Y.; LV, Q.; WU, K.; LANG, X.; LI, Z.; YI, Z.; GENG, D. Interaction between TNF-α and oxidative stress status in first-episode drug-naïve schizophrenia. Psychoneuroendocrinology, v. 114, 104595, 2020. Disponível em: https://doi.org/10.1016/j.psyneuen.2020.104595

ZOROV, D.B.; JUHASZOVA, M.; SOLLOTT, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., v. 94, n. 3, p. 909-950, 2014. Disponível em: https://doi.org/10.1152/physrev.00026.2013




DOI: https://doi.org/10.34119/bjhrv4n5-059

Refbacks

  • There are currently no refbacks.