Evaluation of SARS-CoV-2 genomic architecture and its alteration pattern through ORF analysis/ Avaliação da arquitetura genômica do SARS-CoV-2 e seu padrão de alteração por meio de análise de ORF

Yago Queiroz dos Santos, Gabriella Silva Campos Carelli, Bruno Oliveira de Veras, Anderson Felipe Jácome de França, Elizeu Antunes dos Santos


Members of the Coronaviridae family comprise four genera Alphacoronavirus and Betacoronavirus, which infect only mammals, and Gammacoronavirus and Deltacoronavirus infect birds and mammals. Since the end of 2019, humanity has witnessed the emergence of a new pandemic caused by a line of beta-coronavirus (SARS-CoV-2) responsible for causing a novel severe acute respiratory syndrome named coronavirus disease (COVID-19) affecting countries worldwide. In this context, this work aimed to investigate the main changes in SARS-CoV-2 genomic architecture through the time since the beginning of the infection using in silico analysis. A genomic database was built using complete and revised genomes from NCBI as well as analyzed through sequencing alignment and phylogenetic softwares. This study was able to show a change in the organizational pattern of the genome of the new coronavirus for the different regions studied, in addition to showing specific changes in the genomic sequence requiring further analysis of the collected genomes and may provide new evidence for the key protein changes like Spike protein.


SARS-CoV-2, Genome, COVID-19.

Full Text:



Ahmadzadeh, J., Mobaraki, K., Mousavi, S. J., Aghazadeh-Attari, J., Mirza-Aghazadeh-Attari, M., & Mohebbi, I. (2020). The risk factors associated with MERS-CoV patient fatality: A global survey. Diagnostic Microbiology and Infectious Disease, 96(3), 114876. https://doi.org/10.1016/j.diagmicrobio.2019.114876

Amsalem, D., Dixon, L. B., & Neria, Y. (2021). The Coronavirus Disease 2019 (COVID-19) Outbreak and Mental Health: Current Risks and Recommended Actions. In JAMA Psychiatry (Vol. 78, Issue 1, pp. 9–10). American Medical Association. https://doi.org/10.1001/jamapsychiatry.2020.1730

Bastian, M. S., Fonseca, C. D. da, & Barbosa, D. A. (2021). Os desafios da higienização das mãos de profissionais de saúde no pronto-socorro: revisão integrativa / The challenges of hand hygiene by healthcare professionals in the emergency room: integrative review. Brazilian Journal of Health Review, 4(1), 485–499. https://doi.org/10.34119/bjhrv4n1-039

Blagova, O. V., Varionchik, N. V., Beraia, M. M., Zaidenov, V. A., Kogan, E. A., Sarkisova, N. D., & Nedostup, A. V. (2020). COVID-19 pneumonia in patients with chronic myocarditis (hbv-associated with infarct-like debute): specifics of the diseases course, the role of the basic therapy (Part II). Rational Pharmacotherapy in Cardiology, 16(5), 730–736. https://doi.org/10.20996/1819-6446-2020-10-03

Dos Santos, C. A., Bezerra, G. V. B., Azevedo Marinho, A. R. R. A., Alves, J. C., Tanajura, D. M., & Martins-Filho, P. R. (2021). SARS-CoV-2 Genomic Surveillance in Northeast Brazil: Timing of Emergence of the Brazilian Variant of Concern P1. Journal of Travel Medicine, 2021, 1–3. https://doi.org/10.1093/jtm/taab066

Holmes, E. G., & Rambaut, A. (2004). Viral evolution and the emergence of SARS coronavirus. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1447), 1059–1065. https://doi.org/10.1098/rstb.2004.1478

Hulswit, R. J. G., de Haan, C. A. M., & Bosch, B. J. (2016). Coronavirus Spike Protein and Tropism Changes. In Advances in Virus Research (Vol. 96, pp. 29–57). Academic Press Inc. https://doi.org/10.1016/bs.aivir.2016.08.004

Kryukov, K., Ueda, M. T., Nakagawa, S., & Imanishi, T. (2020). Sequence compression benchmark (SCB) database-A comprehensive evaluation of reference-free compressors for FASTA-formatted sequences. GigaScience, 9(7), 1–12. https://doi.org/10.1093/gigascience/giaa072

Lvov, D. K., & Alkhovsky, S. V. (2020). Source of the COVID-19 pandemic: Ecology and genetics of coronaviruses (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (subgenus Sarbecovirus), and MERS-CoV (subgenus Merbecovirus). Voprosy Virusologii, 65(2), 62–70. https://doi.org/10.36233/0507-4088-2020-65-2-62-70

Rangwala, S. H., Kuznetsov, A., Ananiev, V., Asztalos, A., Borodin, E., Evgeniev, V., Joukov, V., Lotov, V., Pannu, R., Rudnev, D., Shkeda, A., Weitz, E. M., & Schneider, V. A. (2021). Accessing NCBI data using the NCBI sequence viewer and genome data viewer (GDV). Genome Research, 31(1), 159–169. https://doi.org/10.1101/gr.266932.120

Sawicki, M. P., Samara, G., Hurwitz, M., & Passaro, E. (1993). Human Genome Project. The American Journal of Surgery, 165(2), 258–264. https://doi.org/10.1016/S0002-9610(05)80522-7

Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599. https://doi.org/10.1093/molbev/msm092

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260–1263. https://doi.org/10.1126/science.aax0902

Wu, Y. C., Chen, C. S., & Chan, Y. J. (2020). The outbreak of COVID-19: An overview. In Journal of the Chinese Medical Association (Vol. 83, Issue 3, pp. 217–220). Wolters Kluwer Health. https://doi.org/10.1097/JCMA.0000000000000270

Yang, M., Derbyshire, M. K., Yamashita, R. A., & Marchler-Bauer, A. (2020). NCBI’s Conserved Domain Database and Tools for Protein Domain Analysis. Current Protocols in Bioinformatics, 69(1), e90. https://doi.org/10.1002/cpbi.90

DOI: https://doi.org/10.34119/bjhrv4n3-236


  • There are currently no refbacks.