O potencial uso dos inibidores da proteína transportadora de dopamina no tratamento de transtornos neuropsiquiátricos / The potential use of dopamine transport inhibitors in the treatment of neuropsychiatric disorders

Luiz Henrique Dias de Oliveira, Eduardo Borges de Melo, Aline Thaís Bruni

Abstract


O transportador de dopamina (DAT) é uma proteína presente na membrana celular dos neurônios e é um importante alvo para a pesquisa de novos agentes farmacológicos, uma vez que está diretamente envolvido na etiologia de vários transtornos neuropsiquiátricos, como a Doença de Parkinson (DP), transtorno do déficit de atenção com hiperatividade (TDAH), esquizofrenia e transtorno por uso de substâncias (TUS). A principal função do DAT é regular os níveis de dopamina por meio da recaptação extracelular deste neurotransmissor para o interior do neurônio pré-sináptico. A falta de afinidade e seletividade de alguns compostos pelo DAT é um fator limitante para o desenvolvimento de novas opções terapêuticas. Neste trabalho será apresentada uma contextualização sobre este alvo biológico e sua relação com os principais transtornos neuropsiquiátricos. Também são abordadas algumas intervenções farmacológicas atualmente empregadas no tratamento destes transtornos, enfatizando pesquisas recentes sobre alguns inibidores atípicos, conhecidos por não gerarem efeitos comportamentais eufóricos e viciantes observados em outros psicoestimulantes, e que podem contribuir para o planejamento e desenvolvimento de novos agentes terapêuticos mais seguros e eficazes.


Keywords


Transportador de dopamina; transtornos neuropsiquiátricos; inibidores do transportador de dopamina.

References


Armstrong MJ, Okun MS. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA. 2020;323(6):548-560.

Avelar AJ, Cao J, Newman AH, Beckstead MJ. Atypical dopamine transporter inhibitors R-modafinil and JHW 007 differentially affect D2 autoreceptor neurotransmission and the firing rate of midbrain dopamine neurons. Neuropharmacology. 2017;123:410-419.

Beaulieu JM, Gainetdinov RR. The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Pharmacological Reviews. 2011;63(1):182-217.

Brugger SP, Angelescu I, Abi-Dargham A, Mizrahi R, Shahrezaei V, Howes OD. Heterogeneity of Striatal Dopamine Function in Schizophrenia: Meta-analysis of Variance. Biological Psychiatry. 2020;87:215-224.

Cacabelos R. Parkinson’s Disease: From Pathogenesis to Pharmacogenomics. Int. J. Mol. Sci. 2017;18(551):1-28.

Cao J, Slack RD, Bakare OM, Burzynski C, Rais R, Slusher BS, et al. Novel and High Affinity 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues as Atypical Dopamine Transporter Inhibitors. J. Med. Chem. 2016;59:10676-10691.

Carli M, Kolachalam S, Aringhieri S, Rossi M, Giovannini L, Maggio R, et al. Dopamine D2 Receptors Dimers: How can we Pharmacologically Target Them?. Curr Neuropharmacol. 2018;16(2):222-230.

Chan E, Fogler JM, Hammerness PG. Treatment of Attention-Deficit/Hyperactivity Disorder in Adolescents: A Systematic Review. JAMA. 2016;315(18):1997-2008.

Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacology & Therapeutics. 2020;213(107583):1-18.

Cunha-Oliveira T, Rego AC, Oliveira CR. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Research Reviews. 2008;58:192-208.

Dalsgaard S, Østergaard SD, Leckman JF, Mortensen PB, Pedersen MG. Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: a nationwide cohort study. Lancet. 2015;385:2190-2196.

Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics. 2019;51:63-75.

Fahn, S. Description of Parkinson’s Disease as a Clinical Syndrome. Ann. N.Y. Acad. Sci. 2003;991:1-14.

Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neuroscience and Biobehavioral Reviews. 2018;87:255-270.

Faraone SV; Asherson P, Banaschewski T, Biederman J, Buitelaar JK, Ramos-Quiroga A, et al. Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers. 2015;1(15020):1-23.

Felsing DE, Jain MK, Allen JA. Advances in dopamine D1 receptor ligands for neurotherapeutics. Curr Top Med Chem. 2019;19(16):1365-1380.

Galaj E, Ewing S, Ranaldi R. Dopamine D1 and D3 receptor polypharmacology as a potential treatment approach for substance use disorder. Neurosci Biobehav Rev. 2018;89:13-28.

GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459-480.

GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1204-1222.

Haber SN. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience. 2014;12:248-257.

Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T, et al. The Incidence of Parkinson’s Disease: A Systematic Review and Meta-Analysis. Neuroepidemiology. 2016;46:292-300.

Drug abuse definition. [citad 2020 Dez 10]. Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/drug-abuse.

Drug Enforcement Administration. Drugs of Abuse: A DEA Resource Guide. Washington: U.S. Dept. of Justice; 2020. 112 p.

Ghertner R, Grooves L. The Opioid Crisis and Economic Opportunity: Geographic and Economic Trends. ASPE Research Brief. 2018.

Howes OD, Kapur S. The Dopamine Hypothesis of Schizophrenia: Version III—The Final Common Pathway. Schizophrenia Bulletin. 2009;35(3):549-562.

Howes OD, McCutcheon R, Owen MJ, Murray R. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biological Psychiatry. 2017;81(1):9–20.

Iino Y, Sawada T, Yamaguchi K, Tajiri M, Ishii S, Kasai H, et al. Dopamine D2 receptors in discrimination learning and spine enlargement. Nature. 2020;79:555–560.

Ikeda K, Ebina J, Kawabe K, Iwasaki Y. Dopamine Transporter Imaging in Parkinson Disease: Progressive changes and therapeutic modification after anti-parkinsonian medications. Inter Med. 2019;58:1665-1672.

Jean B, Surratt CK, Madura JD. Molecular dynamics of conformation-specific dopamine transporter-inhibitor complexes. J Mol Graph Model. 2017;76:143-151.

Kalaba P, Aher NY, Ilić M, Dragačević V, Wieder M, Miklosi AG, et al. Heterocyclic Analogues of Modafinil as Novel, Atypical Dopamine Transporter Inhibitors. J. Med. Chem. 2017;60:9330-9348.

Kim A, Ciano PD, Pushparaj A, Leca J, Foll BL. The effects of dopamine D4 receptor ligands on operant alcohol self-administration and cue- and stress-induced reinstatement in rats. Eur J Pharmacol. 2020;867.

Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cellular and Molecular Neurobiology. 2019;39(1):31–59.

Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217-238.

Lai TKY, Su P, Zhang H, Liu F, et al. Development of a peptide targeting dopamine transporter to improve ADHD-like deficits. Molecular Brain. 2018;11(16):1-14.

Leng ZG, Lin SJ, Wu ZR, Guo YH, Cai L, Shang HB, et al. Activation of DRD5 (dopamine receptor D5) inhibits tumor growth by autophagic cell death. Autophagy. 2017;13(8):1404-1419.

Li P, Snyder GL, Vanover KE. Dopamine Targeting Drugs for the Treatment of Schizophrenia: Past, Present and Future. Current Topics in Medicinal Chemistry. 2016;16:3385-3403.

Liu C, Kaeser PS. Mechanisms and regulation of dopamine release. Curr Opin Neurobiol. 2019;57:46-53.

Maiti P, Manna J, Dunbar GL. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Translational Neurodegeneration. 2017;6(28):1-35.

Marras C, Beck JC, Bower JH, Roberts E, Ritz B, Ross GW, et al. Prevalence of Parkinson’s disease across North America. npjParkinson’s Disease. 2018;4(21):1-7.

Megat S, Shiers S, Moy J, Barragan-Iglesias P, Pradhan G, Seal RP, et al. A Critical Role for Dopamine D5 Receptors in Pain Chronicity in Male Mice. J Neurosci. 2018;38(2):379-397.

Mereu M, Bonci A, Newman AH, Tanda G. The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders. Psychopharmacology. 2013;229:415-434.

Moreau C, Meguig S, Corvol JC, Labreuche J, Vasseur F, Duhamel A, et al. Polymorphism of the dopamine transporter type I gene modifies the treatment response in Parkinson’s disease. Brain. 2015;138:1271-1283.

Neifert SN, McNeill IT, Rothrock RJ, Caridi JM, Mocco J, Oermann EK. Changing Causes of US Neurological Disease Mortality From 1999 to 2017. JAMA Neurology. 2020;77(9):1175-1177.

Olguín HJ, Guzmán DC, García EH, Mejía GB. The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative Stress. Oxidative Medicine and Cellular Longevity. 2016;2016:1-13.

Perez-Lloret S, Negre-Pages L, Damier P, Delval A, Derkinderen P, Destée A, et al. L-DOPA-induced dyskinesias, motor fluctiations and health-related quality of life: the COPARK survey. European Journal of Neurology. 2017;24:1532-1538.

Pringsheim T, Jette N, Frolkis A, Steeves TDL, et al. The Prevalence of Parkinson’s Disease: A Systematic Review and Meta-analysis. Movement Disorders. 2014;29(13):1583-1590.

Purves-Tyson TD, Owens SJ, Rothmond DA, Halliday GM, Double KL, Stevens J, et al. Putative presynaptic dopamine dysregulation in schizophrenia is supported by molecular evidence from post-mortem human midbrain. Translational Psychiatry. 2017;7:e1003.

Reith MEA, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, et al. Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend. 2015;1:1-19.

Rossi A, Berger K, Chen H, Leslie D, Mailman RB, Huang X, et al. Projection of the prevalence of Parkinson’s disease in coming decades: revisited. Mov Disord. 2018;33(1):156-159.

Schimitt KC, Rothman RB, Reith MEA. Nonclassical Pharmacology of the Dopamine Transporter: Atypical Inhibitors, Allosteric Modulators, and Partial Substrates. J Pharmacol Exp Ther. 2013;346:2-10.

Sekiguchi H, Pavey G, Dean B. Altered levels of dopamine transporter in the frontal pole and dorsal striatum in schizophrenia. npj Schizophr. 2019;5(20):1-8.

Shoykhet M, Clark RSB. Structure, Function, and Development of the Nervous System. Pediatric Critical Care, 4ª ed., 2011.

Stahl SM. Mechanism of action of vesicular monoamine transporter 2 (VMAT2) inhibitors in tardive dyskinesia: reducing dopamine leads to less “go” and more “stop” from the motor striatum for robust therapeutic effects. CNS Spectrums. 2018;23:1-6.

Stepnicki P, Kondej M, Kaczor AA. Current Concepts and Treatments of Schizophrenia. Molecules. 2018;23(2087):1-29.

Storebø OJ, Pedersen N, Ramstad E, Kielsholm ML, Nielson SS, Krogh HB, et al. Methylphenidate for attention deficit hyperactivity disorder (ADHD) in children and adolescents – assessment of adverse events in non‐randomised studies. Cochrane Database of Systematic Reviews. 2018, 5.

Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophrenia Research. 2009;110:1-23.

Thapar A, Cooper M. Attention deficit hyperactivity disorder. Lancet. 2016;387:1240-1250.

Thomas B, Beal MF. Parkinson’s disease. Human Molecular Genetics. 2007;16(2):R183-R194.

Tunstall BJ, Ho CP, Cao J, Vendruscolo JCM, Schmeichel BE, Slack RD, et al. Atypical dopamine transporter inhibitors attenuate compulsive-like methamphetamine self-administration in rats. Neuropharmacology. 2018;131:96-103.

United Nations Office on Drugs and Crime. World Drug Report: 2 – Drug use and health consequences. Vienna: United Nations publication; 2020. 49 p.

United Nations Office on Drugs and Crime. World Drug Report: 5 – Socioeconomic characteristics and drug use disorders. Vienna: United Nations publication; 2020. 33 p.

Vaughan RA, Foster JD. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol Sci. 2013;34(9):1-16.

Voon V, Napier TC, Frank MJ, Faure VS, Sgambato-Faure V, Grace AA, et al. Impulse control disorders and levodopa-induced dyskinesias in Parkinson’s disease: an update. Lancet Neurol. 2017;16:238-250.

Wang KH, Penmatsa A, Gouaux E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature. 2015;521(7552):322-327.

Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL, et al. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature. 2018;8:269-273.

Wasko MJ, Madura JD, Hong WC, Katz JL, Surratt CK. In silico Molecular Dynamics Analysis of Dopamine Transporter Conformational Preference as a Function of Occupancy with Inhibitors of Low Abuse Potential. The FASEB Journal. 2018; 31:1062,7-1062,7.

Wei X, Ma T, Cheng Y, Huang CCY, Wang X, Lu J, et al. Dopamine D1 or D2 receptor-expressing neurons in the central nervous system. Addict Biol. 2019;23(2):569-584.

WHO – World Health Organization. Schizophrenia. WHO; 2019.

Wu J, Lim E, Nadkarni N, Tan E, Kumar PM. The impact of levodopa therapyinduced complications on quality of life in Parkinson’s disease patients in Singapore. Scientific Reports. 2019;9(9248):1-6.

Zhou Y, Cao C, He L, Wang X, Zhang XC. Crystal structure of dopamine receptor D4 bound to the subtype selective ligand, L745870. eLife. 2019;8:1-15.

Zou M, Cao J, Abramyan AM, Kopajtic T, Zanettini C, Guthrie DA, et al. Structure–Activity Relationship Studies on a Series of 3α-[Bis(4-fluorophenyl)methoxy]tropanes and 3α-[Bis(4-fluorophenyl)methylamino]tropanes As Novel Atypical Dopamine Transporter (DAT) Inhibitors for the Treatment of Cocaine Use Disorders. J. Med. Chem. 2017;60(24):10172-10187.




DOI: https://doi.org/10.34119/bjhrv4n3-191

Refbacks

  • There are currently no refbacks.