Coagulopatia induzida pelo estado inflamatório da infecção pela Covid-19 / Coagulopathy induced by the inflammatory state of Covid infection 19

Rosa Gabryella Barreto Tiburi, Marina Catunda Pinheiro Jucá, Mikaele de Souza Sales, Ana Cristina Gomes de Sousa, Tallita Nikássia Leitão de Souza, Cláudio Gleidiston Lima da Silva, Maria do Socorro Vieira Gadelha

Abstract


Os mecanismos de disfunção da coagulação na COVID-19 são complexos, contudo, algumas teorias fisiopatológicas já foram postuladas. Esta revisão sistemática objetiva identificar as evidências existentes na literatura sobre a correlação entre a coagulopatia e a infecção pelo SARS-Cov-2. Foram utilizados os descritores “SARS-Cov-2” e “coagulopathy” para uma pesquisa nas bases de dados “BVS” e “PubMed”, restrita aos trabalhos publicados entre 1 de janeiro de 2020 e 8 de janeiro de 2021, encontrando-se um total de 717 publicações; destes, apenas 36 trabalhos originais atenderam aos critérios de inclusão deste estudo. Observou-se que os principais fatores de risco associados a complicações ao longo da doença causada pelo SARS-Cov-2 foram idade avançada, sexo masculino, HAS, obesidade e diabetes mellitus. Apesar de ainda não esclarecida a patogênese exata da coagulopatia na COVID-19, algumas teorias foram propostas, tais como o desenvolvimento de um estado imunotrombótico associado a intenso estado inflamatório causado pela infecção, com maior formação de agregados de plaquetas-leucócitos circulantes. A endotelopatia e o aumento da reatividade plaquetária, com maior expressão de moléculas de adesão de células endoteliais e de marcadores de ativação plaquetária em pacientes graves, também teriam uma possível participação na patogênese da coagulopatia na COVID-19. Os estudos mostram, em sua maioria, uma baixa atividade dos anticoagulantes naturais e valores elevados de fibrinogênio, TP, TTPA, INR e D-dímero. A disfunção da coagulação pode manifestar-se por trombose venosa, arterial ou microvascular, havendo o aumento de eventos tromboembólicos como TVP, TEP, IAM e AVCi na vigência da infecção. O estudo de possíveis biomarcadores para fenômenos tromboembólicos na coagulopatia induzida pelo SARS-Cov-2 pode ser útil para orientação da terapia anticoagulante; esta terapia, por sua vez, mostrou-se favorável na redução do risco de complicações trombóticas, embora elas ainda possam ocorrer, sendo a heparina de baixo peso molecular a mais utilizada devido à sua atividade anti-inflamatória associada.


Keywords


SARS-Cov-2, Coagulopatia, COVID-19.

References


AYANIAN, S. et al. The association between biomarkers and clinical outcomes in novel coronavirus pneumonia in a US cohort. Biomarkers in Medicine, [S.L.], v. 14, n. 12, p. 1091-1097, ago. 2020. Future Medicine Ltd. http://dx.doi.org/10.2217/bmm-2020-0309

AYERBE, L. et al. The association between treatment with heparin and survival in patients withCovid-19. Journal of Thrombosis and Thrombolysis, [S.L.], v. 50, n. 2, p. 298-301, 31 maio 2020. Springer Science and Business Media LLC. https://doi.org/10.1007/s11239-020-02162-z

BOCCI, M. G. et al. Thromboelastography clot strength profiles and effect of systemic anticoagulation in COVID-19 acute respiratory distress syndrome: a prospective, observational study. European Review for Medical and Pharmacological Sciences, [S.L.], v. 24, n. 23, p. 12466-12479, dez. 2020. Verduci Editore s.r.l.. http://dx.doi.org/10.26355/eurrev_202012_24043

CHEN, N. et al. Analysis of dynamic disturbance in blood coagulation function of patients with Coronavirus Disease 2019. Medicine, [S.L.], v. 99, n. 43, p. 22635, 23 out. 2020. Ovid Technologies (Wolters Kluwer Health). http://dx.doi.org/10.1097/md.0000000000022635

CHEN, S. et al. Correlation analysis of coagulation dysfunction and liver damage in patients with novel coronavirus pneumonia: a single-center, retrospective, observational study. Upsala Journal of Medical Sciences, [S.L.], v. 125, n. 4, p. 293-296, 29 set. 2020. Uppsala Medical Society. http://dx.doi.org/10.1080/03009734.2020.1822960

CHEN, X. et al. Coagulopathy is a major extrapulmonary risk factor for mortality in hospitalized patients with COVID-19 with type 2 diabetes. Bmj Open Diabetes Research & Care, [S.L.], v. 8, n. 2, p. 001851, nov. 2020. BMJ. http://dx.doi.org/10.1136/bmjdrc-2020-001851

CHEN, Y. et al. IP-10 and MCP-1 as biomarkers associated with disease severity of COVID-19. Molecular Medicine, [S.L.], v. 26, n. 1, 29 out. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s10020-020-00230

FRIEDRICH, M. S. et al. Coronavirus-induced coagulopathy during the course of disease. Plos One, [S.L.], v. 15, n. 12, p. 0243409, 17 dez. 2020. PublicLibrary of Science (PLoS). http://dx.doi.org/10.1371/journal.pone.0243409

GOSHUA, G. et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. The Lancet Haematology, [S.L.], v. 7, n. 8, p. 575-582, ago. 2020. Elsevier BV http://dx.doi.org/10.1016/s2352-3026(20)30216-7

HELMS, J. et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Medicine, [S.L.], v. 46, n. 6, p. 1089-1098, 4 maio 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s00134-020-06062-x

HOECHTER, D.J. et al. Higher procoagulatory potential but lower DIC score in COVID-19 ARDS patients compared to non-COVID-19 ARDS patients. Thrombosis Research, [S.L.], v. 196, p. 186-192, dez. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.thromres.2020.08.030

HOTTZ, E. D. et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood, [S.L.], v. 136, n. 11, p. 1330-1341, 10 set. 2020. American Society of Hematology. http://dx.doi.org/10.1182/blood.2020007252

JIN, X. et al. The values of coagulation function in COVID-19 patients. Plos One, [S.L.], v. 15, n. 10, p. 0-0, 29 out. 2020. Public Library of Science (PLoS). http://dx.doi.org/10.1371/journal.pone.0241329

KHIDER, L. et al. Curative anticoagulation prevents endothelial lesion in COVID?19 patients. Journal of Thrombosis and Haemostasis, [S.L.], v. 18, n. 9, p. 2391-2399, 30 jul. 2020. Wiley. http://dx.doi.org/10.1111/jth.14968

KHO, J. et al. Pulmonary embolism in COVID-19: clinical characteristics and cardiac implications. The American Journal of Emergency Medicine, [S.L.], v. 38, n. 10, p. 2142-2146, out. 2020. Elsevier BV http://dx.doi.org/10.1016/j.ajem.2020.07.054

LEPPKES, M. et al. Vascular occlusion byneutrophil extracellular traps in COVID-19. Ebiomedicine, [S.L.], v. 58, p. 102925, ago. 2020. Elsevier BV http://dx.doi.org/10.1016/j.ebiom.2020.102925

LIAO, D. et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. The Lancet Haematology, [S.L.], v. 7, n. 9, p. 671-678, set. 2020. Elsevier BV. http://dx.doi.org/10.1016/s2352-3026(20)30217-9

LIU, Y. et al. Prominent coagulation disorder is closely related to inflammatory response and could be as a prognostic indicator for ICU patients with COVID-19. Journal of Thrombosis and Thrombolysis, [S.L.], v. 50, n. 4, p. 825-832, 6 ago. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11239-020-02174-9

MANNE, B. K. et al. Platelet gene expression and function in patients with COVID-19. Blood, [S.L.], v. 136, n. 11, p. 1317-1329, 10 set. 2020. American Society of Hematology http://dx.doi.org/10.1182/blood.2020007214.

MARTÍN?ROJAS, R. et al. COVID?19 coagulopathy: an in?depth analysis of the coagulation system. European Journal of Haematology, [S.L.], v. 105, n. 6, p. 741-750, 19 ago. 2020. Wiley. http://dx.doi.org/10.1111/ejh.13501

NICOLAI, L. et al. Immunothrombotic Dysregulation in COVID-19 Pneumonia Is Associated With Respiratory Failure and Coagulopathy. Circulation, [S.L.], v. 142, n. 12, p. 1176-1189, 22 set. 2020. OvidTechnologies (Wolters Kluwer Health). http://dx.doi.org/10.1161/circulationaha.120.048488

PAWLOWSKI, C. et al. Inference from longitudinal laboratory tests characterizes temporal evolution of COVID-19-associated coagulopathy (CAC). Elife, [S.L.], v. 9, 17 ago. 2020. ELife Sciences Publications, Ltd. http://dx.doi.org/10.7554/elife.59209

SANTO, Douglas Alexandre do Espírito et al. In vivo demonstration of microvascular thrombosis in severe COVID-19. Journal Of Thrombosis And Thrombolysis, [S.L.], v. 50, n. 4, p. 790-794, 13 ago. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11239-020-02245-x

SARDU, C. et al. Implications of AB0 blood group in hypertensive patients with covid-19. Bmc Cardiovascular Disorders, [S.L.], v. 20, n. 1, 14 ago. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s12872-020-01658-z

SAYAD, B. et al. Blood coagulation parameters in patients with severe COVID-19 from Kermanshah Province, Islamic Republic of Iran. Eastern Mediterranean Health Journal, [S.L.], v. 26, n. 9, p. 999-1004, 1 set. 2020. World Health OrganizationRegional Office for the Eastern Mediterranean(WHO/EMRO). http://dx.doi.org/10.26719/emhj.20.105

SMADJA, D. M. et al. Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis, [S.L.], v. 23, n. 4, p. 611-620, 27 maio 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10456-020-09730-0

STEFELY, J. A. et al. Marked factor V activity elevation in severe COVID ?19 is associated with venous thromboembolism. American Journal of Hematology, [S.L.], v. 95, n. 12, p. 1522-1530, 18 set. 2020. Wiley. http://dx.doi.org/10.1002/ajh.25979

TANG, N. et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of Thrombosis and Haemostasis, [S.L.], v. 18, n. 5, p. 1094-1099, 27 abr. 2020. Wiley. http://dx.doi.org/10.1111/jth.14817

TONG, M. et al. Elevated Expression of Serum Endothelial Cell Adhesion Molecules in COVID-19 Patients. The Journal of Infectious Diseases, [S.L.], v. 222, n. 6, p. 894-898, 24 jun. 2020. Oxford University Press (OUP). http://dx.doi.org/10.1093/infdis/jiaa349

WANG, D. et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Critical Care, [S.L.], v. 24, n. 1, 30 abr. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s13054-020-02895-6

WANG, J. et al. Thrombo-inflammatory features predicting mortality in patients with COVID-19: the fad-85 score. Journal of International Medical Research, [S.L.], v. 48, n. 9, set. 2020. SAGE Publications. http://dx.doi.org/10.1177/0300060520955037

WICHMANN, D. et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19. Annals of Internal Medicine, [S.L.], v. 173, n. 4, p. 268-277, 18 ago. 2020. American College of Physicians. http://dx.doi.org/10.7326/m20-2003

XU, J. et al. Clinical course and predictors of 60-day mortality in 239 critically ill patients with COVID-19: a multicenter retrospective study from wuhan, china. Critical Care, [S.L.], v. 24, n. 1, 6 jul. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s13054-020-03098-9

YAGHI, S. et al. SARS-CoV-2 and Stroke in a New York Healthcare System. Stroke, [S.L.], v. 51, n. 7, p.2002- 2011, jul. 2020. Ovid Technologies (Wolters KluwerHealth). http://dx.doi.org/10.1161/strokeaha.120.030335

ZHANG, Y. et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. Journal of Thrombosis and Thrombolysis, [S.L.], v. 50, n. 3, p. 580-586, 9 jul. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11239-020-02182-9

ZHANG, Y. et al. Manifestations of blood coagulation and its relation to clinical outcomes in severeCOVID?19 patients: retrospective analysis. InternationalJournal of Laboratory Hematology, [S.L.], v. 42, n. 6, p. 766-772, 27 jun. 2020. Wiley. http://dx.doi.org/10.1111/ijlh.13273




DOI: https://doi.org/10.34119/bjhrv4n2-368

Refbacks

  • There are currently no refbacks.