CRISPR-CAS9 fighting human immunodeficiency virus HIV-1 subtype in CD4+ T lymphocytes: a literature review / CRISPR-CAS9 e combate ao vírus da imunodeficiência humana subtipo HIV-1 em LINFÓCITOS T CD4+: uma revisão de literatura

Authors

  • Ivson Warley Tôrres dos Anjos
  • Inaldo Antônio dos Anjos Filho
  • Laura Virgínia Braga Vilela Marinho
  • Nicole Valentine de Moura Santos
  • Nathalia Joanne Bispo Cezar

DOI:

https://doi.org/10.34119/bjhrv3n5-114

Keywords:

CRISPR-Cas9, HIV-1, CCR5, CXCR4, co-receptors, HIV.

Abstract

The human immunodeficiency virus (HIV) requires glycoproteins and specific receptors found in the host and its immune system, like so glycoprotein 120 is responsible for binding to the CD4+ molecule and later binding to the CCR5 or CXCR4 co-receptors. Based on these mechanisms, cell entrance can occur for the replication of viral genetic material. After various investigations on the way bacteria act when facing viral invaders, the CRISPR-Cas9 tool was an explicit protection promoter against HIV-1 in humans. Currently, studies about the simultaneous knockout of CCR5 and CXCR4 genes in CD4+ T cells via CRISPR-Cas9 confer resistance to HIV infection. In this context, research related to the CCR5 delta 32 mutation has a high degree defense against HIV. Besides, mutations in co-receptors may explain the lack of infections in this group. Lastly, a CRISPR-Cas9 technique represents a major breakthrough against HIV-1 infection from co-receptor issues, making it impossible for the virus to attach the cell. From this review, it was possible to observe the importance of the genetic engineering tool CRISPR-Cas9 to be used as a way to treat people affected with HIV, through approaches in CCR5 and CXCR4 co-receptors, as well as alternative methods for its use when the virus is at intracellular latent state.

 

 

References

Allen AG, Chung C-H, Atkins A, Dampier W, Khalili K, Nonnemacher MR, et al. Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection. Front Microbiol [Internet]. 2018 Dec 17 [cited 2019 Apr 2];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6304358/

Nunes AC, Sena MM, Garcia SB, Pereira APL, Trugilo KP, Watanabe MAE, et al. Análise da deleção 32 do receptor de quimiocina CCR5 em descendentes asiáticos em Maringá - Paraná. Biosaúde. 2016 Feb 9;15(1):12–21.

Ebrahimi S, Teimoori A, Khanbabaei H, Tabasi M. Harnessing CRISPR/Cas 9 System for manipulation of DNA virus genome. Reviews in Medical Virology. 2019;29(1):e2009.

Esteves MG. Cura da infecção por HIV: conceitos e aplicações. 2014 Nov [cited 2019 Dec 4]; Available from: https://comum.rcaap.pt/handle/10400.26/13070

Liu Z, Chen S, Jin X, Wang Q, Yang K, Li C, et al. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+ T cells from HIV-1 infection. Cell Biosci [Internet]. 2017 Sep 9 [cited 2019 Apr 2];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591563/

Vicentin DC. Estudo da dinâmica de evolução do HIV em seres humanos utilizando sistema de equações diferenciais ordinárias. Study of the evolution dynamics of the HIV in humans using a system of ordinary differential equations [Internet]. 2019 Feb 28 [cited 2019 May 13]; Available from: https://repositorio.unesp.br/handle/11449/181551

Doitsh G, Galloway NLK, Geng X, Yang Z, Monroe KM, Zepeda O, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 2014 Jan;505(7484):509–14.

Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014 Nov 28;346(6213):1258096.

Wu W, Tang L, D’Amore PA, Lei H. Application of CRISPR-Cas9 in eye disease. Exp Eye Res. 2017;161:116–23.

Xue H-Y, Ji L-J, Gao A-M, Liu P, He J-D, Lu X-J. CRISPR-Cas9 for medical genetic screens: applications and future perspectives. Journal of Medical Genetics. 2016 Feb;53(2):91–7.

Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013 Jan 29;2:e00471.

Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014 Mar 14;343(6176):1247997.

Anders C, Niewoehner O, Duerst A, Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. 2014 Sep 25;513(7519):569–73.

Shui B, Hernandez Matias L, Guo Y, Peng Y. The Rise of CRISPR/Cas for Genome Editing in Stem Cells. Stem Cells Int [Internet]. 2016 [cited 2019 Dec 4];2016. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736575/

Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013 Oct;10(10):957–63.

Kim S, Kim D, Cho SW, Kim J, Kim J-S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014 Jun;24(6):1012–9.

Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature. 2014 May 22;509(7501):487–91.

Maggio I, Holkers M, Liu J, Janssen JM, Chen X, Gonçalves MAFV. Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Scientific Reports. 2014 May 29;4(1):1–11.

Ramos ADR. CRISPR/CAS9?: uma ferramenta de edição genética para investigação e novas terapias. 2016 Jul [cited 2019 Dec 4]; Available from: https://estudogeral.sib.uc.pt/handle/10316/42065

Wang X, Wang Y, Wu X, Wang J, Wang Y, Qiu Z, et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol. 2015 Feb;33(2):175–8.

Ophinni Y, Inoue M, Kotaki T, Kameoka M. CRISPR/Cas9 system targeting regulatory genes of HIV-1 inhibits viral replication in infected T-cell cultures. Scientific Reports. 2018 May 17;8(1):7784.

Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-Based Gene Editing in HIV-1/AIDS Therapy. Front Cell Infect Microbiol. 2019;9:69.

Li C, Guan X, Du T, Jin W, Wu B, Liu Y, et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol. 2015 Aug;96(8):2381–93.

Hou P, Chen S, Wang S, Yu X, Chen Y, Jiang M, et al. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep. 2015 Oct 20;5:15577.

Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci USA. 2015 Aug 18;112(33):10437–42.

Wang CX, Cannon PM. The clinical applications of genome editing in HIV. Blood. 2016 May 26;127(21):2546–52.

Chung S-H, Seki K, Choi B-I, Kimura KB, Ito A, Fujikado N, et al. CXC chemokine receptor 4 expressed in T cells plays an important role in the development of collagen-induced arthritis. Arthritis Res Ther. 2010;12(5):R188.

Yuan J, Wang J, Crain K, Fearns C, Kim KA, Hua KL, et al. Zinc-finger nuclease editing of human cxcr4 promotes HIV-1 CD4(+) T cell resistance and enrichment. Mol Ther. 2012 Apr;20(4):849–59.

Yoder KE, Bundschuh R. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9. Scientific Reports. 2016 Jul 12;6(1):1–12.

Kimberland ML, Hou W, Alfonso-Pecchio A, Wilson S, Rao Y, Zhang S, et al. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments. J Biotechnol. 2018 Oct 20;284:91–101.

Pe?nerová PC. The almighty CRISPR-Cas9 technology: How does it work? [Internet]. 2016 [cited 2019 Dec 28]. Available from: https://www.molecularecologist.com/2016/09/the-almighty-crispr-cas9-technology-how-does-it-work/

Cravero M. Embrione: scienza e riproduzione [Internet]. Il Saggiatore. 2016 [cited 2019 Dec 27]. Available from: http://www.ilsaggiatore.org/2016/03/embrione-scienza-e-riproduzione/

Bio M. CRISPR/Cas9 Genome Editing: Transfection Methods [Internet]. 2018 [cited 2019 Dec 27]. Available from: https://www.mirusbio.com/applications/genome-editing-using-crispr-cas/overview/

Published

2020-09-18

How to Cite

DOS ANJOS, I. W. T.; ANJOS FILHO, I. A. dos; VILELA MARINHO, L. V. B.; MOURA SANTOS, N. V. de; BISPO CEZAR, N. J. CRISPR-CAS9 fighting human immunodeficiency virus HIV-1 subtype in CD4+ T lymphocytes: a literature review / CRISPR-CAS9 e combate ao vírus da imunodeficiência humana subtipo HIV-1 em LINFÓCITOS T CD4+: uma revisão de literatura. Brazilian Journal of Health Review, [S. l.], v. 3, n. 5, p. 12771–12784, 2020. DOI: 10.34119/bjhrv3n5-114. Disponível em: https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/16841. Acesso em: 28 mar. 2024.

Issue

Section

Original Papers