Moduladores de coagulação alterados comprometem os pacientes infectados com COVID-19 / Altered coagulations modulators compromise COVID-19 infected patients

Ana Clara Silva Carvalho, Luanni Souto de Albuquerque Barros, Emanuelle Costa Pereira Tavares Tenório, Tadeu Peixoto Lopes, Lorenna Peixoto Lopes, Cristiane Monteiro da Cruz

Abstract


O novo coronavírus, denominado de coronavírus da síndrome respiratória aguda grave tipo 2 (SARS-CoV-2), foi responsável por causar um surto de pneumonia na cidade de Wuhan, província de Hubei, China em dezembro de 2019. A doença causada pelo SARS-CoV-2, conhecido como COVID-19, apresenta elevada morbimortalidade e transmissibilidade, proporcionando sua expansão mundial e ocasionando um estágio pandêmico. O SARS-CoV-2 tem como receptor a enzima conversora de angiotensina 2 e, após fusão com as células do hospedeiro, promove uma tempestade de citocinas que resulta em inflamação excessiva capaz de causar hipercoagulabilidade em pacientes críticos com COVID-19, associando a doença com um aumento na incidência de embolia pulmonar e trombose microvascular nos pulmões. Portanto, o objetivo do estudo é compreender a cascata de sinalização dos diferentes marcadores laboratoriais de pacientes com COVID-19, a fim de verificar possíveis distúrbios de coagulação em pacientes gravemente infectados.


Keywords


Coagulação Sanguínea, COVID-19, Inflamação, Prognóstico, Trombose.

References


AMGALAN, A.; OTHMAN, M. Exploring Possible Mechanisms for COVID-19 Induced Thrombocytopenia: Unanswered Questions. J Thromb Haemost, 2020 Jun;18(6):1514-1516. doi: 10.1111/jth.14832.

BANSAL, M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr, 2020 May-June; 14(3): 247–250.

BIKDELI, B. et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 2020.

BLACK, S.; KUSHNER, I.; SAMOLS, D. C-reactive Protein. J Biol Chem, 2004; 279(47):48487-90. doi: 10.1074/jbc.R400025200.

BOZZINI, C.E.; MOLINAS F. Hemostasia. In: Hous say A.B., Cirgolani H.E. Fisiologia Humana de Houssay, 2004 7 ed. Artmed, Porto Alegre.

CARLOS, M.M.L.; FREITAS, P.D.F.S. Estudo da cascata de coagulação sanguínea e seus valores de referência. Acta Veterinaria Brasílica, 2007. v.1, n.2, p.49-55.

COLAFRANCESCO, S. et al. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome?. Autoimmunity reviews, 2020.

CONNORS, J.M.; LEVY, J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood, 2020; 135 (23): 2033–2040. doi: https://doi.org/10.1182/blood.2020006000.

CRUVINEL, W.M. et al. Sistema imunitário: Parte I. Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória. Rev. Bras. Reumatol, 2010. https://doi.org/10.1590/S0482-50042010000400008.

CUI, D. et al. Clinical findings in a patient with haemophilia A affected by COVID-19. Haemophilia, 2020;10.1111/hae.14000. doi:10.1111/hae.14000.

CUI, S. et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost, 2020;18(6):1421-1424. doi:10.1111/jth.14830.

DU, Y. et al. Clinical characteristics of 85 fatal cases of Wuhan COVID-19: A retrospective observational study. Am J Respir Crit Care Med, 2020; 201 (11): 1372-1379. doi: 10.1164 / rccm.202003-0543OC.

FLOYD, C.N.; FERRO, A. The platelet fibrinogen receptor: from megakaryocyte to the mortuary. JRSM cardiovascular disease, 2012, doi:10.1258/cvd.2012.012007

GIANNIS, D.; ZIOGAS, I.A.; GIANNI, P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol, 2020 Jun; 127: 104362.

GUO, L. et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis, 2020.

GUTBIER B. et al. Prognostic and Pathogenic Role of Angiopoietin-1 and -2 in Pneumonia. Am J Respir Crit Care Med, 2018 Jul 15;198(2):220-231. doi: 10.1164/rccm.201708-1733OC.

HASOKSUZ, M.; KILIÇ, S.; SARAÇ, F. Coronaviruses and SARS-COV-2. Turk J Med Sci, 2020; 50(3): 549–556.

HENRY, B.M. et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med, 2020. doi:10.1515/cclm-2020-0369.

HENRY, B.M. et al. Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. The American Journal of Emergency Medicine, 2020, doi:10.1016/j.ajem.2020.05.073.

HILGENFELD, R.; PEIRIS, M. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res, 2013 Oct; 100(1): 286–295.

IBA T. et al. Coagulopathy of Coronavirus Disease 2019. Critical care medicine, 27 May. 2020. doi:10.1097/CCM.0000000000004458.

JIANG, F. et al. Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19). J Gen Intern Med, 2020 May; 35(5): 1545–1549.

JIN Y. et al. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses, 2020. DOI:10.3390/v12040372.

JOSE, R.J.; MANUEL, A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. The Lancet Respiratory Medicine vol. 8,6 (2020): e46-e47. doi:10.1016/S2213-2600(20)30216-2.

KNOVICH, M.A. et al. Ferritin for the clinician. Blood reviews, 2009; 95-104. doi:10.1016/j.blre.2008.08.001.

LEVI, M. et al. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020 Jun; 7(6): e438–e440.

LI, L.Q. et al. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol, 2020;92(6):577-583. doi:10.1002/jmv.25757.

LIN, L. et al. Hypothesis for potential pathogenesis of SARS-CoV-2 infection–a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect, 2020; 9(1): 727–732.

LIPPI, G. et al. C-reactive protein and venous thromboembolism: causal or casual association?. Clinical Chemistry and Laboratory Medicine, 2010.

LIU, F. et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol, 2020. doi:10.1016/j.jcv.2020.104370.

MCLNTOSH, K. Novel Coronavirus (2019-nCov). UpToDate, 2020. Disponível em: uptodate.com/contents/coronavirus-disease-2019-covid-19).

MEI, H.; HU, Y. Characteristics, Causes, Diagnosis and Treatment of Coagulation Dysfunction in Patients With COVID-19. Zhonghua Xue Ye Xue Za Zhi, 2020.

NG, V.L. Prothrombin Time and Partial Thromboplastin Time Assay Considerations. Clin Lab Med, 2009. doi: 10.1016/j.cll.2009.05.002.

PANIGADA, M. et al. Hypercoagulability of COVID-19 patients in Intensive Care Unit. A Report of Thromboelastography Findings and other Parameters of Hemostasis. J Thromb Haemost, 2020;10.1111/jth.14850. doi:10.1111/jth.14850.

PASCOAL, D. et al. Síndrome respiratória aguda: uma resposta imunológica exacerbada ao COVID19. Brazilian Journal of Health Review, 2020. doi: 10.34119/bjhrv3n2-138.

QU, R. et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J Med Virol, 2020. doi:10.1002/jmv.25767.

QUINTAVALLE, G. et al. Severe bleeding in a patient with Factor XIII deficiency and COVID-19. Haemophilia, 2020;10.1111/hae.14088. doi:10.1111/hae.14088.

RIVAS-POLLMAR, M.I. et al. Thromboprophylaxis in a patient with COVID-19 and severe hemophilia A on emicizumab prophylaxis. J Thromb Haemost, 2020;10.1111/jth.14954. doi:10.1111/jth.14954.

RODRIGUEZ-MORALES, A.J. et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis, 2020 March-April; 34: 101623.

SMADJA, D.M. et al. Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis, 2020. https://doi.org/10.1007/s10456-020-09730-0.

SPIEZIA, L. et al. COVID-19-Related Severe Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure. Thromb Haemost, 2020 Jun; 120(6): 998–1000.

STADLER, K. et al. SARS — beginning to understand a new virus. Nat Rev Microbiol, 2003; 1(3): 209–218.

TANG, N. et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost, 2020;18:844–847.

TANG, N. et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost, 2020;18(5):1094-1099. doi:10.1111/jth.14817.

TEUWEN, L.A. et al. COVID-19: the vasculature unleashed. Nat Rev Immunol, 2020.

TIAN S. et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Modern Pathology, 2020.

TOTURA, A.L.; BARIC, R.S. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr Opin Virol, 2012 Jun; 2(3): 264–275.

TUFAN, A.; GULER, A.A.; MATUCCI-CERINIC. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turk J Med Sci, 2020; 50(3): 620–632.

VAIRA, L.A. et al. Anosmia and Ageusia: Common Findings in COVID-19 Patients. The Laryngoscope, 2020.

WACHSMANN, P.; LAMPRECHT, A. Polymeric Nanoparticles for the Selective Therapy of Inflammatory Bowel Disease. Nanomedicine - Cancer, Diabetes, and Cardiovascular, Central Nervous System, Pulmonary and Inflammatory Diseases, 2012. 377–397. doi:10.1016/b978-0-12-391860-4.00019-7.

WALLS, A.C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 2020 Apr 16;181(2):281-292.e6. doi: 10.1016/j.cell.2020.02.058.

WAN S. et al. Clinical features and treatment of COVID19 patients in northeast Chongqing. J Med Virol, 2020; 92:797–806. https://doi.org/10.1002/jmv.25783.

WANG, F. et al. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J Infect Dis, 2020; 221(11):1762-1769. doi:10.1093/infdis/jiaa150.

WANG, J. et al. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol, 2020. doi:10.1002/JLB.3COVR0520-272R.

WANG, L. C-reactive protein levels in the early stage of COVID-19. Med Mal Infect, 2020 Jun; 50(4): 332–334.

WANG, W. et al. Serum ferritin: Past, present and future. Biochim Biophys Acta, 2010;1800(8):760-769. doi:10.1016/j.bbagen.2010.03.011.

WEISEL, J. W. Fibrinogen and Fibrin. Adv Protein Chem. 247–299. 2005. doi:10.1016/s0065-3233(05)70008-5.

WEITZ, J.I.; FREDENBURGH, J.C.; EIKELBOOM, J.W. A test in context: D-Dimer. Journal of the American College of Cardiology, 2017.

WIT, E. et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol, 2016; 14(8): 523–534.

WORLD HEALTH ORGANIZATION (WHO): Coronavirus disease (COVID-19) outbreak situation, 2020. Disponível em: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.

YERUVA, S.L.H. et al. COVID-19–associated coagulopathy. The Hospitalist, 2020.

ZHANG, Y. et al. Clinical and Coagulation Characteristics of 7 Patients With Critical COVID-2019 Pneumonia and Acro-Ischemia. Zhonghua Xue Ye Xue Za Zhi, 2020 Mar 28;41(0):E006. doi: 10.3760/cma.j.issn.0253-2727.2020.0006.

ZHANG, Y. et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med, 2020;382(17):e38. doi:10.1056/NEJMc2007575.

ZULFIQAR, A.A. et al. Immune Thrombocytopenic Purpura in a Patient with Covid-19. N Engl J Med, 2020;382(18):e43. doi:10.1056/NEJMc2010472.

ZUO, Y. et al. Neutrophil Extracellular Traps in COVID-19. JCI Insight, 2020 Jun 4;5(11):e138999. doi: 10.1172/jci.insight.138999.




DOI: https://doi.org/10.34119/bjhrv3n5-021

Refbacks

  • There are currently no refbacks.