Linhagens de células de melanoma: Mutações e impacto em vias de transdução de sinal / Melanoma cell lines: Mutations and impact on signal transduction pathways
Abstract
Keywords
Full Text:
PDF (Português (Brasil))References
Andersen LB, et al. Mutations in the neurofibromatosis 1 gene in sporadic malignant melanoma cell lines. Nat Genet. 1993;3(2):118-21. doi: 10.1038/ng0293-118.
Antunes F, et al. Fasting boosts sensitivity of human skin melanoma to cisplatin-induced cell death. Biochem Biophys Res Commun. 2017;485(1):16-22. doi: 10.1016/j.bbrc.2016.09.149.
Ascierto PA, et al. The role of BRAF V600 mutation in melanoma. J Transl Med. 2012;10:85. doi: 10.1186/1479-5876-10-85.
Ballif BA, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ. 2002;12:397–408.
Barnes TA, Amir E. HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer [published correction appears in Br J Cancer. 2018 Jan 09;:]. Br J Cancer. 2017;117(4):451-460. doi:10.1038/bjc.2017.220
Bonatelli M, et al. Targeting cancer cell metabolism in melanomas: metabolic profiling and 3-bromopyruvate sensitivity screening. 2018;10.1136/esmoopen-2018-EACR25.257
Bos JL. Ras oncogenes in Human Cancer: A Review. Cancer Res. 1989;49(17):4682-9.
Bourland J, et al. Tissue-engineered 3D melanoma model with blood and lymphatic capillaries for drug development. Sci Rep. 2018;8(1):13191. doi:10.1038/s41598-018-31502-6
Breslin, S., & O’Driscoll, L. Three‐dimensional cell culture: The missing link in drug discovery. Drug Discovery Today. 2013;18(5‐6):240–249.
Brohem CA, et al. Artificial skin in perspective: concepts and applications. Pigment Cell Melanoma Res. 2011;24(1):35-50. doi:10.1111/j.1755-148X.2010.00786.x
Brohem CA, et al. Artificial skin in perspective: Concepts and applications. Pigment Cell & Melanoma Res 2011;24(1):35-50.
Carretero J, et al. Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells. Clin Exp Metastasis. 1999;17(7):567-574. doi:10.1023/a:1006725226078
Chabner BA, Roberts TG Jr. Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1):65-72. doi:10.1038/nrc1529
Chatzinikolaidou M. Cell spheroids: the new frontiers in in vitro models for cancer drug validation. Drug Discov Today. 2016;21(9):1553-1560. doi:10.1016/j.drudis.2016.06.024
Chen B, et al. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites. eLife. 2017;6. doi: 10.7554/eLife.29795.
Chiba K, et al. Cancer-associated TERT promoter mutations abrogate telomerase silencing. Elife.4:e07918. (2015). doi: 10.7554/eLife.07918.
Ciołczyk-Wierzbicka D, et al. mTOR inhibitor everolimus reduces invasiveness of melanoma cells. Hum Cell. 2020;33(1):88-97. doi:10.1007/s13577-019-00270-4
Cukierman E, et al. Taking cell-matrix adhesions to the third dimension. Science. 2001;294(5547):1708‐1712. doi:10.1126/science.1064829
Davies H, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–954.
Deavall DG, et al. Drug-induced oxidative stress and toxicity. J Toxicol. 2012;2012:645460. doi:10.1155/2012/645460
Ding KF, et al. Analysis of variability in high throughput screening data: applications to melanoma cell lines and drug responses. Oncotarget. 2017;8(17):27786-27799.
Dugo M, et al. A melanoma subtype with intrinsic resistance to BRAF inhibition identified by receptor tyrosine kinases gene-driven classification. Oncotarget. 2015;6(7):5118–5133.
Fedorenko I, et al. NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene. 2013;32:3009–3018. doi: 10.1038/onc.2012.453
Ferraz LS, et al. Targeting mitochondria in melanoma: Interplay between MAPK signaling pathway and mitochondrial dynamics. Biochem Pharmacol. 2020;178:114104. doi: 10.1016/j.bcp.2020.114104.
Figarola JL, et al. Bioenergetic modulation with the mitochondria uncouplers SR4 and niclosamide prevents proliferation and growth of treatment-naïve and vemurafenib-resistant melanomas. Oncotarget. 2018;9(97):36945-36965. doi: 10.18632/oncotarget.26421.
Garcia VA, et al. Mechanisms of PTEN loss in cancer: it’s all about diversity. Semin Cancer Biol. 2019;59:66-79. doi: 10.1016/j.semcancer.2019.02.001.
Garman B, et al. Genetic and Genomic Characterization of 462 Melanoma Patient-Derived Xenografts, Tumor Biopsies, and Cell Lines. 2017;21(7):1936-1952. doi: 10.1016/j.celrep.2017.10.052.
Gibney GT, et al. Paradoxical oncogenesis--the long-term effects of BRAF inhibition in melanoma. Nat Rev Clin Oncol. 2013;10(7):390-399. doi:10.1038/nrclinonc.2013.83
Glenister A, et al. A Warburg effect targeting vector designed to increase the uptake of compounds by cancer cells demonstrates glucose and hypoxia dependent uptake. PLoS One. 2019;14(7):e0217712. doi:10.1371/journal.pone.0217712
Gonçalves PR, et al. Violacein induces death of RAS-mutated metastatic melanoma by impairing autophagy process. Tumour Biol. 2016;37(10):14049-14058. doi:10.1007/s13277-016-5265-x
Grimes DR, et al. A method for estimating the oxygen consumption rate in multicellular tumour spheroids. J R Soc Interface. 2014;11(92):20131124.
Halaban R. RAC1 and Melanoma. Clin Ther. 2015;37(3):682–685. doi: 10.1016/j.clinthera.2014.10.027.
Han SY, et al. Functional evaluation of PTEN missense mutations using in vitro phosphoinositide phosphatase assay. Cancer Res. 2000;60:3147-3151.
Hemmings, BA & Restuchia DF. Pathway PI3K - PKB/Akt. Cold Spring Harb Perspect Biol. 2012;4(9):a011189. doi: 10.1073/pnas.0900780106.
Hirschhaeuser F, et al. Lactate: a metabolic key player in cancer. Cancer Res. 2011;71(22):6921-6925. doi:10.1158/0008-5472.CAN-11-1457
Höckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93(4):266-276. doi:10.1093/jnci/93.4.266
Hodis E, et al. A Landscape of Driver Mutations in Melanoma. Cell. 2014;150(2):250-263. doi: 10.1016/j.cell.2012.06.024.
Hofschröer V, et al. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells. Sci Rep. 2017;7:42369. doi: 10.1038/srep42369.
Horn S, et al. TERT Promoter Mutations in Familial and Sporadic Melanoma. Science. 2013;339(6122): 959-961. doi: 10.1126/science.1230062.
Housman G, et al. Drug resistance in cancer: an overview. Cancers (Basel). 2014;6(3):1769-92. doi: 10.3390/cancers6031769.
Hubbard SR, Miller WT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol. 2007;19(2):117–123. doi: 10.1016/j.ceb.2007.02.010.
Ikediobi ON, et al. Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. 2006;5(11):2606-12. doi: 10.1158/1535-7163.MCT-06-0433.
Jang GH, et al. Low inducible expression of p21Cip1 confers resistance to paclitaxel in BRAF mutant melanoma cells with acquired resistance to BRAF inhibitor. Mol Cell Biochem. 2015;406(1-2):53-62. doi:10.1007/s11010-015-2423-1
Keniry M & Parsons R. The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene. 2008;(27):5477–5485. doi: 10.1038/onc.2008.248.
Kiuru M & Busam KJ. The NF1 gene in tumor syndromes and melanoma. Lab Invest. 97(2): 146–157. (2017). doi: 10.1038/labinvest.2016.142.
Klimkiewicz K, et al. A 3D model of tumour angiogenic microenvironment to monitor hypoxia effects on cell interactions and cancer stem cell selection. Cancer Lett. 2017;396:10-20. doi: 10.1016/j.canlet.2017.03.006.
Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. U. S. A., 1971;68:820-823. doi: 10.1073/pnas.68.4.820.
Krauthammer M, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44(9):1006–1014. doi: 10.1038/ng.2359.
Larkin J, et al. Combined Vemurafenib and Cobimetinib in BRAF-Mutated Melanoma. N Engl J Med. 371:1867-1876. (2014). doi: 10.1056/NEJMoa1408868.
Lee S, et al. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. International Journal of Molecular Sciences. 2020;21(3):1102. doi: 10.3390/ijms21031102.
Lee SY, Bissell MJ. A Functionally Robust Phenotypic Screen that Identifies Drug Resistance-associated Genes Using 3D Cell Culture. Bio Protoc. 2018;8(22):e3083. doi:10.21769/BioProtoc.3083
Li J, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 275:1943-1947 (1997). doi: 10.1126/science.275.5308.1943.
Li Y, et al. Activation of mutant TERT promoter by RAS-ERK signaling is a key step in malignant progression of BRAF-mutant human melanomas. Proc Natl Acad Sci U S A. 20166;113(50):14402–14407. doi: 10.1073/pnas.1611106113.
Lin Y, Zheng Y. Approaches of targeting Rho GTPases in cancer drug discovery. Expert Opin Drug Discov. 2015;10(9):991–1010. doi: 10.1517/17460441.2015.1058775.
Lionarons DA, et al. RAC1P29S Induces a Mesenchymal Phenotypic Switch via Serum Response Factor to Promote Melanoma Development and Therapy Resistance. Cancer Cell. 2019;36(1):68-83. doi: 10.1016/j.ccell.2019.05.015.
Liu D, et al. Mechanisms of Resistance to Immune Checkpoint Blockade. Am J Clin Dermatol. 2019;20(1):41‐54. doi:10.1007/s40257-018-0389-y
Long GV et al. Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma. N Engl J Med. 2014;371:1877-1888. doi: 10.1056/NEJMoa1406037.
Longati P, et al. 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer. 2013;13:95. doi: 10.1186/1471-2407-13-95.
Luo W, Semenza GL. Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol Metab. 2012;23(11):560-6
Maciejowsk J, Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol. 2017;18(3):175–186. doi: 10.1038/nrm.2016.171.
Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability [published correction appears in Nat Rev Mol Cell Biol. 2019 Apr;20(4):259]. Nat Rev Mol Cell Biol. 2017;18(3):175-186. doi:10.1038/nrm.2016.171
Maertens O, et al. Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discovery. 2013;3(3). doi: 10.1158/2159-8290.CD-12-0313.
Mahimainathan L, Choudhury GG. Inactivation of Platelet-Derived Growth Factor Receptor by the Tumor Suppressor PTEN Provides a Novel Mechanism of Action of the Phosphatase. J Biol Chem. 2004;279(15):15258-68. doi: 10.1074/jbc.M314328200.
Malumbres, M., Barbacid, M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–465. doi: 10.1038/nrc1097.
Manzano JL, et al., Resistant mechanisms to BRAF inhibitors in melanoma. Ann Transl Med. 2016;4(12):237. doi: 10.21037/atm.2016.06.07.
Mehta G, et al. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. Journal of Controlled Release. 2012;164(2):192–204.
Menshykau, D. Emerging technologies for prediction of drug candidate efficacy in the preclinical pipeline. Drug Discovery Today. 2017;22(11):1598–1603.
Moreira AF, et al. Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review. Microporous and Mesoporous Materials. 2016;236:141-157
Morrison DK. MAP Kinase Pathways. Cold Spring Harb Perspect Biol. 2012;4(11):a011254. doi: 10.1101 / cshperspect.a011254
Nagore E, et al. TERT promoter mutations in melanoma survival. Int J Cancer. 2016;139(1):75-84. doi: 10.1002/ijc.30042.
Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther. 2016;163:94‐108. doi:10.1016/j.pharmthera.2016.03.013
Nathanson KL, et al., Tumor genetic analyses of patients with metastatic melanoma treated with the BRAF inhibitor Dabrafenib (GSK2118436). Clin Cancer Res. 2013;19(17):4868–4878. doi: 10.1158/1078-0432.CCR-13-0827.
Nazarian R, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326): 973–977. doi: 10.1038/nature09626.
Nervi C, et al. Epigenetic treatment of solid tumours: a review of clinical trials. Clin Epigenetics. 2015;7:127. doi:10.1186/s13148-015-0157-2
Nissan MH, et al. Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence. Cancer Res. 2014;74(8):2340-50. doi: 10.1158/0008-5472.CAN-13-2625.
Niu N, Wang L. In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics. 2015;16(3):273–285.
Nunes AS, et al. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng. 2019;116(1):206‐226. doi:10.1002/bit.26845
Nyga A, et al. 3D tumour models: novel in vitro approaches to cancer studies. J Cell Commun Signal. 2011;3:239–248. doi: 10.1007/s12079-011-0132-4
Overwijk WW, Restifo NP. B16 as a mouse model for human melanoma. Curr Protoc Immunol. 2001;Chapter 20:Unit-20.1. doi:10.1002/0471142735.im2001s39
Pampaloni F, et al. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8(10):839-845. doi:10.1038/nrm2236
Paraiso KHT, et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 2011;71(7):2750–2760. doi: 10.1158/0008-5472.CAN-10-2954.
Petit V, et al. C57BL/6 congenic mouse NRASQ61K melanoma cell lines are highly sensitive to the combination of Mek and Akt inhibitors in vitro and in vivo. Pigment Cell Melanoma Res. 2019;32(6):829-841. doi: 10.1111/pcmr.12807.
Pratilas CA, et al. Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res 2008;68:9375-83.
Qin Y, et al. Hypoxia-Driven Mechanism of Vemurafenib Resistance in Melanoma. Mol Cancer Ther. 2016;15(10):2442-2454. doi: 10.1158/1535-7163.MCT-15-0963.
Roberts RE. The extracellular signal-regulated kinase (ERK) pathway: a potential therapeutic target in hypertension. J Exp Pharmacol. 2012;4:77‐83. Published 2012 Aug 1. doi:10.2147/JEP.S28907
Rocha-Brito KJP, et al. Calix[6]arene diminishes receptor tyrosine kinase lifespan in pancreatic cancer cells and inhibits their migration and invasion efficiency. Bioorg Chem. 2020;100:103881. doi:10.1016/j.bioorg.2020.103881
Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat. 2011;14(3):191-201. doi:10.1016/j.drup.2011.03.001
Rushworth LK, et al. Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol. 2006;26(6):2262–2272. doi: 10.1128/MCB.26.6.2262-2272.2006
Sandri S, et al. Vemurafenib resistance increases melanoma invasiveness and modulates the tumor microenvironment by MMP-2 upregulation. Pharmacol Res. 2016;111:523-533. doi: 10.1016/j.phrs.2016.07.017.
Sauter ER, et al. Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res. 2002;62(11):3200-3206.
Schadendorf D, et al. Membrane transport proteins associated with drug resistance expressed in human melanoma. Am J Pathol. 1995;147(6):1545-52.
Shain AH, Bastian BC. From melanocytes to melanomas [published correction appears in Nat Rev Cancer. 2020;20(6):355]. Nat Rev Cancer. 2016;16(6):345-358. doi:10.1038/nrc.2016.37
Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27-36. doi:10.1093/carcin/bgp220
Singh K, Mehta S. The clinical development process for a novel preventive vaccine: An overview. J Postgrad Med. 2016;62(1):4-11. doi:10.4103/0022-3859.173187
Smalley KS, et al. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther. 2008;7(9):2876-83. doi: 10.1158/1535-7163.MCT-08-0431.
Smalley KSM, et al. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E–mutated melanomas. Mol Cancer Ther. 2008;7(9):2876–2883. doi: 10.1158/1535-7163.MCT-08-0431.
Sonveaux P. ROS and radiotherapy: more we care. Oncotarget. 2017;8(22):35482-35483. doi:10.18632/oncotarget.16613
Špaková I, et al. Hypoxia factors suppression effect on the energy metabolism of a malignant melanoma cell SK-MEL-30. Eur Rev Med Pharmacol Sci. 2020;24(9):4909-4920. doi:10.26355/eurrev_202005_21180
Sun C, et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature. 2014;508(7494):118-124. doi: 10.1038/nature13121.
Tanami H, et al. Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines. Oncogene. 2004;23(54):8796-804. doi: 10.1038/sj.onc.1208152.
Tate JG, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019;47(D1):D941-D947. doi: 10.1093/nar/gky1015.
Trager MH, et al. Biomarkers in melanoma and non-melanoma skin cancer prevention and risk stratification. Exp Dermatol. 2020;10.1111/exd.14114. doi:10.1111/exd.14114
Trédan O, et al. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99(19):1441-1454. doi:10.1093/jnci/djm135
van Staveren WC, et al. Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells?. Biochim Biophys Acta. 2009;1795(2):92-103. doi:10.1016/j.bbcan.2008.12.004
Villanueva J, et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by co-targeting MEK and IGF-1R/PI3K. Cancer Cell. 2010;18(6):683–695. doi: 10.1016/j.ccr.2010.11.023.
Wagle N, et al. MAP Kinase Pathway Alterations in BRAF-Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition. Cancer Discovery. 2014;4(1). doi: 10.1158/2159-8290.CD-13-0631.
Warburg, O. On the origin of cancer cells. Science. 1956;123:309–314.
Ware MJ, et al. Generation of an in vitro 3D PDAC stroma rich spheroid model. Biomaterials. 2016;108:129-42. doi: 10.1016/j.biomaterials.2016.08.041.
Watson IR, et al. The RAC1 P29S Hotspot Mutation in Melanoma Confers Resistance to Pharmacological Inhibition of RAF. Cancer Res. 2014;74(17):4845–4852. doi: 10.1158/0008-5472.CAN-14-1232-T.
Wenzel C, et al. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res. 2014;323(1):131-43. doi: 10.1016/j.yexcr.2014.01.017.
Wigerup C, et al Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther. 2016;164:152-169. doi:10.1016/j.pharmthera.2016.04.009
Xing F, et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF. Oncogene. 2012;31(4):446-57. doi: 10.1038/onc.2011.250.
Yamada K, et al. Factors influencing [F-18] 2-fluoro-2-deoxy-D-glucose (F-18 FDG) accumulation in melanoma cells: is FDG a substrate of multidrug resistance (MDR)? J Dermatol. 2005;32(5):335-45. doi: 10.1111/j.1346-8138.2005.tb00904.x.
Yang Y, et al. p38 and JNK MAPK, but not ERK1/2 MAPK, play important role in colchicine-induced cortical neurons apoptosis. European Journal of Pharmacology. 20077;576(1–3):26-33. doi: 10.1016/j.ejphar.2007.07.067.
Yoshida A, et al. Induction of therapeutic senescence in vemurafenib-resistant melanoma by extended Inhibition of CDK4/6. Cancer Res. 2016;76(10):2990–3002. doi: 10.1158/0008-5472.CAN-15-2931.
Zaidi S, et al. Mutated BRAF Emerges as a Major Effector of Recurrence in a Murine Melanoma Model After Treatment With Immunomodulatory Agents. Mol Ther. 2015;23(5):845-856. doi: 10.1038/mt.2014.253.
Zhao Y, et al. MicroRNA-33b inhibits cell proliferation and glycolysis by targeting hypoxia-inducible factor-1α in malignant melanoma. Exp Ther Med. 2017;14(2):1299-1306. doi: 10.3892/etm.2017.4702.
Zips D, et al. New anticancer agents: In vitro and in vivo evaluation. In Vivo, 2005;19(1):1–7.
Alonso-Curbelo D, et al. RAB7 counteracts PI3K-driven macropinocytosis activated at early stages of melanoma development. Oncotarget. 2015;6(14):11848-11862. doi:10.18632/oncotarget.4055
García-Fernández M, et al. Metastatic risk and resistance to BRAF inhibitors in melanoma defined by selective allelic loss of ATG5. Autophagy. 2016;12(10):1776-1790. doi:10.1080/15548627.2016.1199301
DOI: https://doi.org/10.34119/bjhrv3n4-291
Refbacks
- There are currently no refbacks.