Estudos morfológico e morfométrico do coração e da artéria aorta em ratos adultos desmamados precocemente / Morphological and morphometric studies of the heart and aorta artery in preciously weed adult rats

José Emerson Xavier, Rafael Danyllo da Silva Miguel, Ardilles Juan Carlos Alves dos Santos, Mariana Nathália Gomes de Lima, Ruan Victor Alves da Silva, Iris Nataniely Cavalcante dos Santos, Carina Scanoni Maia, Fernanda das Chagas Ângelo Mendes Tenóri, Francisco Carlos Amanajás de Aguiar Júnior, Sandra Lopes de Souza, Lisiane dos Santos Oliveira, Juliana Pinto de Medeiros

Abstract


Objetivo: Realizar uma investigação acerca dos efeitos do desmame precoce sobre a morfologia e morfometria do coração e da artéria aorta de ratos adultos submetidos ao desmame precoce no 15° dia de vida pós-natal. Método: Foram utilizados 16 ratos machos da linhagem Wistar. Os grupos experimentais foram formados pelos grupos DP15 (desmame no 15° dia pós-natal) e C30 (desmame no 30° dia pós-natal), com o 8 ratos cada grupo. Após o desmame, os animais foram separados em gaiolas individuais e no 100° dia de vida pós-natal, foram eutanasiados através da pefusão intracardíaca. O coração e a artéria aorta foram coletados e posteriormente processados para a microscopia de luz. As análises foram realizadas a partir de fotomicrografias e do software ImageJ. Foram avaliados o número de cárdiomiócitos, a área nuclear e a espessura da aorta. Resultado: Os resultados mostraram que o desmame precoce promoveu alterações significativas nas variáveis analisadas, provocando a redução da área nuclear dos cardiomiócitos (C: 16,77µm ± 5,95; DP: 12,48µm ± 7,03), hiperplasia do miocárdio (C: 30,42µm ± 11,38; DP: 48,87µm ± 13,62), diminuição na espessura da artéria aorta (C: 168,56µm ± 46,61; DP: 113,81µm ± 28,01) (C: 130,69µm ± 40,75; DP: 81,62µm ± 19,89). Baseado em nossos resultados podemos sugerir que o desmame precoce é uma agressão perinatal capaz de provocar alterações na morfologia e morfometria do coração e da artéria aorta de ratos.

 

 


Keywords


Aorta Ascendente, Coraçã, Desmame Precoce, Morfologia

References


Weaver LT. Milk and the neonatal gut: comparative lessons to be learnt. Equine veterinary journal. 1986; 18 (6): 427-429. doi: 10.1111/j.2042-3306.1986.tb03677.x

Kikusui T, Kiyokawa Y, Mori Y. Deprivation of mother–pup interaction by early weaning alters myelin formation in male, but not female, ICR mice. Brain research. 2007;1133, 115-122. doi: 10.1016/j.brainres.2006.11.031

Oliveira LS, Silva LP, Silva AI, Magalhães CP, Souza SL, Castro RM . Effects of early weaning on the circadian rhythm and behavioral satiety sequence in rats. Behavioural processes. 2011; 86 (1): 119-124. doi: 10.1016/j.beproc.2010.10.001

Souza SLD, Castro RMD, Nogueira MI. Comportamento alimentar neonatal. Rev bras saúde matern infant. 2003; 3 (3): 241-246. doi: 10.1590/S1519-38292003000300002

Organização Mundial da Saúde (OMS). Administração da OMS. Disponível em: . Acesso em: 17. Jan.2014.

Plaut SM, Davis JM. Effects of mother-litter separation on survival, growth, and brain amino acid levels. Physiol Behav. 1972; 8 (1): 43–51. doi: 10.1016/0031-9384(72)90128-X

Cramer CP, Thiels E, Alberts JR. Weaning in rats: I. Maternal behavior. Dev Psychobiol. 1990; 23 (6): 479–493. doi: 10.1002/dev.420230604

Younes-Rapozo V, Moura EG, Manhaes AC, Peixoto-Silva N, Oliveira E, Lisboa PC. Early weaning by maternal prolactin inhibition leads to higher neuropeptide Y and astrogliosis in the hypothalamus of the adult rat offspring. British Journal of Nutrition.2015; 113 (3): 536-545. doi: 10.1017/S0007114514003882

Weaver LT, Laker MF, Nelson R, Lucas A. Milk feeding and changes in intestinal permeability and morphology in the newborn. J Pediatr Gastroenterol Nutr. 1987; 6 (3): 351-358. PMID: 3123630

Weaver LT, Landymore-Lim L, Hudson GJ. The guinea pig as a model for the study of the effects of milk on growth and development. Growth Dev Aging. 1988; 52 (2): 91-96. PMID: 3203981

Bivolarski BL, Vachkova EG. Morphological and functional events associated to weaning in rabbits. Journal of animal physiology and animal nutrition. 2014; 98 (1): 9-18. doi: 10.1111/jpn.12058

Oliveira LDS, Souza SLD, Castro RM. Behavioral satiety sequence: an experimental model for studying feeding behavior. Revista de Nutrição. 2011; 24 (4): 619-628. doi: 10.1590/S1415-52732011000400010

Silva MC, Arandas MJ, Lima-Junior NB, Aguiar-Júnior FC, Santos KR. Análise histomorfométrica dos cardiomiócitos e deposição de colágeno no músculo cardíaco de ratas ooforectomizadas. Pesquisa Veterinária Brasileira. 2016; 36 (3): 216-220. doi: 10.1590/S0100-736X2016000300011

Sloan S, Gildea A, Stewart M, Sneddon H, Iwaniec D. Early weaning is related to weight and rate of weight gain in infancy. Child Care Health. 2008; 34 (1): 59–64. doi: 10.1111/j.1365-2214.2007.00771.x

Bonomo IT, Lisboa PC, Passos MC, Alves SB, Reis AM, De Moura EG. Prolactin inhibition at the end of lactation programs for a central hypothyroidism in adult rat. J Endocrinol. 2008; 198 (2): 331-337. doi: 10.1677/JOE-07-0505

Bonomo IT, Lisboa PC, Pereira AR, Passos MC, De Moura EG. Prolactin inhibition in dams during lactation programs for overweight and leptin resistance in adult offspring. J Endocrinol. 2007: 192 (2): 339–344. doi: 10.1677/joe.1.06952

De Moura EG, Bonomo IT, Neto JFN, De Oliveira E, Trevenzoli IH, Reis AM, Passos AM, Lisboa PC. Maternal prolactin inhibition during lactation programs for metabolic syndrome in adult progeny. J Physiol. 2009; 587(20): 4919–4929. doi: 10.1113/jphysiol.2009.176289

Lima NDAS, Demoura EG, Passos MC, Neto FJN, Reis AM, De Oliveira E, Lisboa PC. Early weaning causes undernutrition for a short period and programmes some metabolic syndrome components and leptin resistance in adult rat offspring. Br J Nutr. 2011; 105 (9): 1405–1413. doi: 10.1017/S0007114510005064

Lima NS, De Moura EG, Franco JG, Pinheiro CR, Pazos-Moura CC, Cabanelas A, Carlos AS, Saba CCN, De Oliveira E, Lisboa PC. Developmental plasticity of endocrine disorders in obesity model primed by early weaning in dams. Horm Metab Res. 2013; 45 (1): 22-30. doi: 10.1055/s-0032-1323703

Oddy WH. Infant feeding and obesity risk in the child. Breastfeed Rev. 2012; 20 (2): 7–12. PMID: 22946146

Barker, DJ. The developmental origins of adult disease. Eur J Epidemiol. 2003; 18 (8): 733–736. doi: 10.1080/07315724.2004.10719428

Simmons RA. Developmental origins of adult disease. Pediatr Clin North Am. 2009; 56 (3): 449-466. doi: 10.1159/000273066

Kikusui T, Mori Y. Behavioural and neurochemical consequences of early weaning in rodents. Journal of neuroendocrinology. 2009; 21 (4): 427-431. doi: 10.1111/j.1365-2826.2009.01837.x

Younes-Rapozo V, De Moura EG, Lima NS, Barradas PC, Manhães AC, Oliveira E, Lisboa PC. Early weaning is associated with higher neuropeptide Y (NPY) and lower cocaine- and amphetamine-regulated transcript (CART) expressions in the paraventricular nucleus (PVN) in adulthood. British Journal of Nutrition. 2012; 108 (12): 2286–229. doi: 10.1017/S0007114512000487

Pessanha CR, Boueri BFC, Costa LR, Ferreira MR, Melo HS, Abreu MDC, Pessoa LR, Da Silva PC, Pereira AD, Ribeiro DC, De Meneses JA, Da Costa CA, Boaventura GT. Brain development in male rats subjected to early weaning and treated with diet containing flour or flaxseed oil after 21 days until 60 days. Journal of developmental origins of health and disease. 2015; 6 (4): 268-271. doi: 10.1017/S2040174415001087

Ahuja P, Sdek P, Maclellan, WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev. 2007; 87 (2): 521–544.

Ikenishi A, Iwamoto OH, Yoshitome N, Tane S, Nakamura S, Obayashi K, Hayashi T, Takeuchi T. Cell cycle regulation in mouse heart during embryonic and postnatal stages. Dev Growth Differ. 2012; 54 (8): 731–738. doi: 10.1111/j.1440-169X.2012.01373.x

Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. J Physiol. 1996; 271 (5): 2183–2189. PMID: 8945939

Reiss K, Kajstura J, Zhang X, Li P, Szoke E, Olivetti G, Anversa P. Acute myocardial infarction leads to upregulation of the IGF-1 autocrine system, DNA replication, and nuclear mitotic division in the remaining viable cardiac myoctes. Exp Cell Res. 1994; 213 (2): 463-472. doi: 10.1006/excr.1994.1224

Beltrami CA, Di Loreto C, Finato N, Rocco M, Artico D, Cigola E, Gambert SR, Olivetti G, Kajstura J, Anversa P. Proliferating cell nuclear antigen (PCNA), DNA synthesis and mitosis in myocytes following cardiac transplantation in man. J Mol Cell Cardiol. 1997; 29 (2): 789-802. doi: 10.1006/jmcc.1997.0514

Liu Y, Cigola E, Cheng W, Kajstura J, Olivetti G, Hintze TH, Anversa P. Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest. 1995; 73 (6): 771-787. PMID: 8558838

Quaini F, Cigola E, Lagrasta C, Saccani G, Quaini E, Rossi C, Olivetti G, Anversa P. End-stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear antigen and nuclear mitotic division in ventricular myocytes. Circ Res. 1994; 75 (6): 1050-1063. doi: 10.1161/01.RES.75.6.1050

Gama EF, Liberti EA, De-Souza RR. Effects of pre- and postnatal protein deprivation on atrial natriuretic peptide- (ANP-) granules of the right auricular cardiocytes. An ultrastructural morphometric study. Eur J Nutr. 2007; 46 (5): 245–250. doi: 10.1007/s00394-007-0652-0

Tappia PS, Guzman C, Dunn L, Aroutiounova N. Adverse cardiac remodeling due to maternal low protein diet is associated with alterations in expression of genes regulating glucose metabolismo. Nutrition, Metabolism & Cardiovascular Diseases. 2013; 23 (2): 130-135. doi: 10.1016/j.numecd.2011.03.010

Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease. Circulation. 2003: 107 (1): 139–146. doi: 10.1161/01.CIR.0000048894.99865.02

Lakatta EG. The reality of aging viewed from the arterial wall. Artery Res. 2013; 7 (2): 73–80. doi: 10.1016/j.artres.2013.01.003

Skilton MR, Evans N, Griffiths KA, Harmer JA, Celermajer DS. Aortic wall thickness in newborns with intrauterine growth restriction. Lancet. 2005; 365 (9469): 1484–1486. doi: 10.1016/S0140-6736(05)66419-7

Dodson RB, Miller TA, Powers K, Yang Y, Yu B, Albertine KH, Zinkhan EK. Intrauterine growth restriction influences vascular remodeling and stiffening in the weanling rat more than sex or diet. J Physiol Heart Circ Physiol. 2017; 312 (2): 250–264. doi: 10.1152/ajpheart.00610.2016

Battaglia FC, Lubchenco LO . A practical classification of newborn infants by weight and gestational age. J Pediatr. 1967; 71 (2): 159–163. doi: 10.1016/S0022-3476(67)80066-0

Creasy RK, Resnik R. Intrauterine growth restriction. In: Maternal-Fetal Medicine: Principles and Practice. Philadelphia: Saunders.2008: p. 635–650.

Neerhof MG. Causes of intrauterine growth restriction. Clin Perinatol. 1995; 22 (2): 375–385. PMID: 7671543

Kobs RW, Chesler NC. The mechanobiology of pulmonary vascular remodeling in the congenital absence of eNOS. Biomech Model Mechanobiol. 2006; 5 (4): 217–225. doi: 10.1007/s10237-006-0018-1

Safar ME, Levy BI, Struijker-Boudier H. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation. 2003; 107 (22): 2864–2869. doi: 10.1161/01.CIR.0000069826.36125.B4

Shadwick RE. Mechanical design in arteries. J Exp Biol. 1999; 202 (23): 3305–3313. PMID: 10562513

Skilton MR, Gosby AK, Wu BJ, Ho LM, Stocker R, Caterson ID, Celermajer DS. Maternal undernutrition reduces aortic wall thickness and elastin content in offspring rats without altering endothelial function. Clinical Science. 2006; 111 (4): 281-287. doi: 10.1042/CS20060036




DOI: https://doi.org/10.34119/bjhrv3n4-279

Refbacks

  • There are currently no refbacks.