Fármacos utilizados no tratamento de hipercolesterolemia: uma análise histórica e químico-medicinal / Drugs used in the treatment of hypercholesterolemia: a historical and medicinal chemistry focused analysis
Abstract
Nesse trabalho, são apresentados aspectos relacionados ao desenvolvimento das principais classes farmacológicas utilizadas no tratamento de hipercolesterolemia, explorando-se as características estruturais importantes a sua ação biológica.
Keywords
Full Text:
PDF (Português (Brasil))References
Altmann SW, Davis HR, Zhu LJ, Yao X, Hoos LM, Tetzloff G et al. Niemann–Pick C1 Like 1 Protein Is Critical for Intestinal Cholesterol Absorption. Science. 303: 1201–1204, 2004.
Ballantyne C. Clinical Lipidology: A companion to Braunwald’s heart disease. 2. ed. Filadelfia: Sauders, 2014.
Beigel F, Teich N, Howaldt S, Lammert F, Maul J, Breiteneicher S et al. Colesevelam for the treatment of bile acid malabsorption-associated diarrhea in patients with Chron’s disease: A randomized, double-blind, placebo-controlled study. J Chron’s Colitis. 8(11): 1471-1479, 2014.
Bergen SS, Van Itallie TB, Tennent DM, Sebrell WH. Effects of an anion exchange resin on serum cholesterol in man. Proc Soc Exp Biol Med. 102: 676-679, 1959.
Bruckert E. New lipid-modifying therapies. Expert Opin. Investig. Drugs. 12: 325-335, 2003.
Burnett DA, Caplen MA, Davis HR, Burrier RE, Clader JW. 2-Azetidones as inhibitors of cholesterol absorption. J. Med. Chem. 37: 1733-1736, 1994.
Chaudhary R, Garg J, Shah N, Sumner A. PCSK9 inhibitors: a new era of lipid lowering therapy. World J. Cardiol. 9(2): 76-91, 2017.
Clader JW. The Discovery of Ezetimibe: A view from outside the receptor. J. Med. Chem. 47(1): 1-9, 2004.
Clader JW, Berger JG, Burrier RE, Davis HR, Domalski M, Dugar S et al. Substituted (1,2-diarylethyl) amide acyl-CoA: cholesterol acyltransferase inhibitors: effect of polar groups on in vitro and in vivo activity. J. Med. Chem. 38: 1600-1607, 1995.
Davidson MH, Dicklin MR, Maki KC, Kleinpell RM. Colesevelam hydrochloride: a non-absorbed, polymetric cholesterol-lowering agent. Exp Opin Invest Drugs. 9(11): 2663-2671, 2000.
Dugar S, Yumibe N, Clader JW, Vizziano M, Huie K, Van Heek M et al. Metabolism and structure activity data based drug design: discovery of (-) SCH 53079 an analog of the potent cholesterol absorption inhibitor (-) SCH 48461. Bioorg. Med. Chem. Lett. 6: 1271–1274, 1996.
Elguindy A, Yacounb MH. The discovery of PCSK9 inhibitors: a tale of creativity and multifaceted translational research. Glob. Cardiol. Sci. Pract. 2013(4): 343-347, 2013.
Endo A, Kuroda M, Tsujita Y. ML-236A, ML-236B and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium Citrinum. J. Antibiot. 29(12): 1346-1348, 1976.
Endo A. The discovery and development of HMG-CoA reductase inhibitors. J. Lipid Res. 33: 1569-1582, 1992.
Endo A. The origin of the statins. Int Congr. 1262: 3-8, 2004.
Evans M, Roberts A, Rees A. Pharmacological management of hyperlipidemia. Br. J. Diabetes Vasc. Dis. 3: 204-210, 2003.
Ezzet F, Krishna G, Wexler DB, Statkevich P, Kosoglou T, Batra VK. A population pharmacokinetic model that describes multiple peaks due to enterohepatic recirculation of ezetimibe. Clin Ther. 23(6): 871-885, 2001.
Faludi AA, Izar MCO, Saraiva JFK, Chacra APM, Bianco HT, Afiune Neto A et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose – 2017. Arq. Bras. Cardiol. 109(2Supl.1): 1-76, 2017.
Ferrari F, Stein R, Motta MT, Moriguchi EH. PCSK9 inhibitors: clinical relevance, molecular mechanisms and safety in clinical practice. Arq Bras Cardiol. 112(4): 453-460, 2019.
Fiorucci S, Mencarelli A, Palladino G, Sipriani S. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol Sci. 30(11): 570-580, 2009.
Garcia MJ, Reinoso RF, Sanchez-Navarro A, Prous JR. Clinical pharmacology of statins. Methods Find. Exp. Clin. Pharmacol. 25(6): 457-481, 2003.
Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, Braun MP et al. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). PNAS. 102(23): 8132–8137, 2005.
Ge L, Wang J, Qi W, Miao H, Cao J, Qu Y, Li B, Song B. The Cholesterol Absorption Inhibitor Ezetimibe Acts by Blocking the Sterol-Induced Internalization of NPC1L1. Cell Metab. 7(6): 508-519, 2008.
Glueck CJ, Ford SJ, Scheel D, Steiner P. Colestipol and cholestyramine resin: comparative effects in familial type II hyperlipoproteinemia. JAMA. 222(6): 676-681, 1972.
Gotto AM. Statin therapy: Where are we? Where do we go next? Am J. Cardiol. 87(5A): 13B-18B, 2001.
Haines BE, Wiest O, Stauffacher CV. The Increasingly complex mechanism of HMG-CoA reductase. Accounts of chemical research. 46(11): 2416-2426, 2012.
Hajar R. Statins: Past and Present. History of Medicine, Heart Views. 12(3): 121-127, 2011.
Hajar R. PSCK9 inhibitors: a short history and a new era of lipid-lowering therapy. Heart Views. 20(2): 74-75, 2019.
Hamelin BA, Turgeon J. Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci. 19(1): 26-37, 1998.
Harrold M. Antihyperlipoproteinemics and inhibitors of cholesterol biosynthesis. In: Lemke TL, Williams DA (Org.). Foye’s Principles of Medicinal Chemistry. 7 ed. Baltimore: Lippincott Williamns & Wilkins, 2013, p. 815-410.
Heel RG, Brogden RN, Pakes GE, Speight TM, Avery GS. Colestipol: a review of its pharmacological proprieties and therapeutic efficacy in patients with hypercholesterolemia. Drugs. 19(3): 161-180, 1980.
Ishikawa Y, Itoh T, Satoh M, Fusazaki T, Sugawara S, Nakajima S, Nakamura M, Yoshihiro M. Impact of water and Lipid-Soluble statins on nonculprit lesions in patients with acute coronary syndrome. Int Heart J. 59(1): 27-34, 2018.
Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 292: 1160-1664, 2001.
Jain KS, Kathiraven MK, Somani RS, Shishoo CJ. The biology and chemistry of hyperlipidemia. Bioorg. Med. Chem. 15(14): 4674-4699, 2007.
Jia L, Betters J, Yu L. Niemann-Pick C1-Like 1 (NPC1L1) Protein in Intestinal and Hepatic Cholesterol Transport. Annu. Rev. Fisiol. 73: 239-259, 2011.
Johns WH, Bates TR. Quantification of the Binding Tendencies of Cholestyramine I: Effect of Structure and Added Electrolytes on the Binding of Unconjugated and Conjugated Bile-Salt Anions. J Pharm Sci. 58(2): 179-183, 1969.
Karaki F, Ohgane K, Dodo K, Hashimoto Y. Structure–activity relationship studies of Niemann-Pick type C1-like 1 (NPC1L1) ligands identified by screening assay monitoring pharmacological chaperone effect. Bioorg. Med. Chem. 21(17): 5297-5309, 2013.
Kastelein J, van Dam MJ. A new role for combination therapy in lipid management. Brit J Cardiol. 8(11): 639-653, 2001.
Kawashiri MA, Higashikata T, Nohara A, Kobayashi J, Inazu A, Koizumi J et al. Efficacy of colestimide administered with atorvastatin in Japanese patients with heterozygous familial hypercholesterolemia (FH). Circ. J. 69(5): 515-520, 2005.
Kosoglou T, Statkevich P, Johnson-Levonas AO, Paolini JF, Bergman AJ, Alton KB. Ezetimibe: A review of its metabolism, pharmacokinetics and drug interactions. Clin Pharmacokinet. 44(5) 467-494, 2005.
Krause MP, Hallage T, Gama MP, Sasaki JE, Miculis CP, Buzzachera CF, Silva SG. Associação entre perfil lipídico e adiposidade corporal em mulheres com mais de 60 anos de idade. Arq Bras Cardiol. 89(3): 163-169, 2007.
Lammert F, Wang DQ. New Insights into the Genetic Regulation of Intestinal Cholesterol Absorption. Gastroenterology. 129: 718–734, 2005.
Magalhães MEC. Mecanismos de rabdomiólise com as estatinas. Arq. Bras. Cardiol. 85(Suppl. 5): 42-44, 2005.
Manniello M, Pisano M. Alirocumab (Praluent): first in the new class of PSCK9 inhibitors. P T. 41(1): 28-53, 2016.
McTaggart F. Comparative pharmacology of rosuvastatin. Atheroscler Suppl. 4(1): 9-14, 2003.
Moghadasan M. Clinical pharmacology of 3-hidroxy-3-metylglutaryl coenzyme-A reductase inhibitors. Life Sci. 65(13): 1329-1337, 1999.
Nadruz Junior W. Diagnóstico e tratamento de fatores de risco. Com Ciência. 109: 2009.
Page MM, Watts GF. PCSK9 inhibitors – mechanism of action. Aust. Prescr. 39(5): 164-167, 2016.
Patrick JE, Kosoglou T, Stauber KL, Alton KB, Maxwell SE, Zhu Y et al. Disposition of the selective cholesterol absorption inhibitor ezetimibe in healthy male subjects. Drug Metab Dispos. 30(4): 430-437, 2002.
Pereira DG. Importância do metabolismo no planejamento de fármacos. Quim. Nova. 30(1): 171-177, 2007.
Pfefferkorn JA, Canção Y, Sun K, Miller SR, Trivedi BK, Choi C, et al. Design and synthesis of hepatoselective, pyrrole-based HMG-CoA reductase inhibitors. Bioorg. Med. Chem. Lett. 17(16): 4538-4544, 2007.
Raydan SSS. Estudo retrospectivo da incidência de fatores de risco em portadores da doença arterial coronariana. Braz. J. Hea. Rev. 2(3): 1848–1917, 2019.
Reiss AB, Shah N, Muhieddine D, Zhen J, Yudkevich J, Kasselman LJ et al. PSCK9 in cholesterol metabolism: from bench to bedside. Clin Sci. 132(11): 1135-1153, 2018.
Roche VF. Antihyperlipidemic statins: a self-contained, clinically relevant medicinal chemistry lesson. Am. J. Pharm. Educ. 69(4): 546-560, 2005.
Rosenblum SB, Huynh T, Afonso A, Davis HR, Yumibe N, Clader JW, Burnett DA. Discovery of 1-(4-fluorophenyl)-(3R)-[3-(4-fluorophenyl)-(3S)-hydroxypropyl]-(4S)-(4-hydroxyphenyl)-2-azetidinone (SCH 58235): A designed, potent, orally active inhibitor of cholesterol absorption. J. Med. Chem. 41(6): 973-980, 1998.
Salisburry BG, Davis HR, Burrier RE, Burnett DA, Boykow G, Caplen MA et al. Hypercholesterolemic activity of a novel inhibitor of cholesterol absorption, SCH 48461. Atherosclerosis, 115(1): 45-63, 1995.
Schachter M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an updates. Fundam. Clin. Pharmacol. 19(1): 117-125, 2005.
Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. PNAS. 100(3): 928-933, 2003.
Sliskovic DR, Picard JA, Krause BR. ACAT inhibitors: the search for a novel and effective treatment of hypercholesterolemia and atherosclerosis. Prog. Med. Chem. 39: 121-171, 2002.
Souich P, Roederer G, Dufour R. Myotoxicity of statins: mechanism of action. Pharmacol. Ther. 175: 1-16, 2017.
Stein EA. The power of statins: aggressive lipid lowering. Clin. Cardiol. 26(4 Suppl 3): III25-31, 2003.
Stossel TP. The Discovery of Statins. Cell. 134(6): 903-905, 2008.
Suzuki T, Oba K, Igari Y, Watanabe K, Matsumura N, Futami-Suda S et al. Effects of bile-acid-binding resin (colestimide) a blood glucose and visceral fat in patients with type II diabetes mellitus and hypercholesterolemia: an open-label, randomized, case-control, crossover study. J. Diabetes Complications. 26(1): 34-39, 2012.
Tavori H, Melone M, Rashid S. Alirocumab: PSCK9 inhibitor for LDL cholesterol reduction. Expert Rev Cardiovasc Ther. 12(10): 1137-1144, 2014.
Tobert JA. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov. 2(7): 517-26, 2003.
Wensel TM, Waldrop BA, Wensel B. Pitavastatin: a new HMG-CoA reductase inhibitor. Ann. Pharmacother. 44: 507-514, 2010.
Yadav K, Sharma M, Ferdinand KC. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors: Present Perspectives and Future Horizons. Nutr Metab Cardiovasc Dis. 26(10): 853-862, 2016.
Yu L. The structure and function of Niemann–Pick C1-like 1 protein. Curr. Opin. Lipidol. 19(3): 263-269, 2008.
DOI: https://doi.org/10.34119/bjhrv3n4-143
Refbacks
- There are currently no refbacks.