Patients with genetic disorders as risk group for COVID-19 / Pacientes com distúrbios genéticos como grupo de risco para COVID-19

Authors

  • Lília Maria de Azevedo Moreira Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Renata Melo dos Santos

DOI:

https://doi.org/10.34119/bjhrv3n3-209

Keywords:

COVID-19, SARS-CoV-2, genetic variations, respiratory impairment, genetic disorders, risk group, social distancing measures.

Abstract

The coronavirus disease (COVID-19) pandemic has seriously affected the global population and has raised concerns about the effect of this new disease on individuals with genetic disorders, many of which have a systemic effect, including impairment of the respiratory system. A lack of published literature about the consequences of  SARS-CoV-2 infection in genetic disorders is observed, in this sense,  the present review analyses the current knowledge about COVID-19 and its impacts on patients with genetic disorders, also genetic variants as factors of susceptibility and possible risks and preventive measures to those patients, highlighting the role of the restriction to social contact in prevention.

References

Malik YA. Properties of Coronavirus and SARS-CoV-2. Malays J Pathol. 2020; 42: 3?11.

Zheng Y, Xu H, Yang M, et al. Epidemiological characteristics and clinical features of 32 critical and 67 noncritical cases of COVID-19 in Chengdu. J Clin Virol 2020; 127: 104366. DOI:10.1016/j.jcv.2020.104366

Roser M, Ortiz-Ospina E. “Coronavirus Pandemic (COVID-19)- the data”. Published online at Our World in Data.org. Retrieved from: ‘https://ourworldindata.org/coronavirus-data’ [Online Resource] 2020. Accessed in May 30th 2020.

Adair LB 2nd, Ledermann EJ. Chest CT. Findings of Early and Progressive Phase COVID-19 Infection from a US Patient [published online ahead of print, 2020 Apr 20]. Radiol Case Rep 2020; DOI: 10.1016/j.radcr.2020.04.031

Pinto BGG, et al. ACE2 Expression is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19. [published online ahead of print, 2020 Apr 22]. medRxiv 2020; DOI: https://doi.org/10.1101/2020.03.21.20040261

Vishnevetsky A, Levy M. Rethinking high-risk groups in COVID-19 [published online ahead of print, 2020 Mar 27]. Mult Scler Relat Disord 2020; DOI: 10.1016/j.msard.2020.102139

Lake MA. What we know so far: COVID-19 current clinical knowledge and research. Clin Med (Lond). 2020; 20: 124?127. DOI: 10.7861/clinmed.2019-coron

Jiang F, Jiang XL, Wang ZG, et al. Detection of Severe Acute Respiratory Syndrome Coronavirus 2 RNA on Surfaces in Quarantine Rooms. [published online ahead of print, 2020 May 18]. Emerging Infectious Diseases. 2020; 26. DOI:10.3201/eid2609.201435

Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme-2 (ACE2), SARS-CoV-2 and pathophysiology of coronavirus disease 2019 (COVID-19) [published online ahead of print, 2020 May 17]. J Pathol. 2020; DOI:10.1002/path.5471

Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome [published correction appears in Lancet Respir Med. 2020 Feb 25]. Lancet Respir Med 2020; 8: 420?422. DOI:10.1016/S2213-2600(20)30076-X

Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181: 271?280. DOI: 10.1016/j.cell.2020.02.052

Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 2009; 106:5871?5876. DOI:10.1073/pnas.0809524106

Casanova JL, Su HC. On behalf of the COVID Human Genetic Effort, A global effort to define the human genetics of protective immunity to SARS-CoV-2 infection. Cell 2020; DOI: 10.1016/j.cell.2020.05.016

Kachuri, L, Francis S, Morrison M, et al. The landscape of host genetic factors involved in infection to common viruses and SARS-COV-2. [published online ahead of print, 2020 May 07]. medRxiv; DOI:10.1101/2020.05.01.20088054

Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; 8: 475?481. DOI:10.1016/S2213-2600(20)30079-5

Stein RA. COVID-19: Risk groups, mechanistic insights and challenges [published online ahead of print, 2020 Apr 7]. Int J Clin Pract 2020; e13512. DOI:10.1111/ijcp.13512

Asselta R, Paraboschi EM, Mantovani A, et al. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. [published online ahead of print, 2020 Apr 11]. medRxiv. DOI: 10.1101/2020.03.30.20047878

Stopsack KH, Mucci LA, Antonarakis ES, et al. TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? [published online ahead of print, 2020 Apr 10]. Cancer Discov 2020; DOI:10.1158/2159-8290.CD-20-0451

Matsuyama S, Nao N, Shirato K, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A 2020; 117: 7001?7003. DOI:10.1073/pnas.2002589117

Moraes D, Paiva BVB, Cury SS. Prediction of SARS-CoV interaction with host proteins during lung aging reveals a potential role for TRIB3 in COVID-19. [published online ahead of print, 2020 Apr 9]. bioRvix 2020. DOI: 10.1101/2020.04.07.030767.

Murray MF, Kenny EE, Ritchie MD, et al. COVID-19 outcomes and the human genome [published online ahead of print, 2020 May 12]. Genet Med 2020; DOI:10.1038/s41436-020-0832-3

Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis [published online ahead of print, 2020 Mar 31]. J Microbiol Immunol Infect. 2020; DOI: 10.1016/j.jmii.2020.03.022

FEBRARARAS & Observatório de Doenças Raras NEv/UnB. Guidelines on the Coronavirus (Covid-19) epidemic for people with rare diseases and their caregivers. 2 ed. Brasília: Universidade de Brasília, 2020.

Veerapandiyan A, Connolly AM, Finkel RS, et al. Spinal muscular atrophy care in the COVID-19 pandemic era [published online ahead of print, 2020 Apr 24]. Muscle Nerve. 2020; DOI:10.1002/mus.26903

Veerapandiyan A, Wagner KR, Apkon S, et al. The care of patients with Duchenne, Becker, and other muscular dystrophies in the COVID-19 pandemic [published online ahead of print, 2020 Apr 24]. Muscle Nerve 2020; DOI:10.1002/mus.26902

Afsharpaiman S, Sillence DO, Sheikhvatan M, et al. Respiratory events and obstructive sleep apnea in children with achondroplasia: investigation and treatment outcomes. Sleep Breath. 2011; 15: 755?761. DOI:10.1007/s11325-010-0432-6

Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet. 2007; 370:162?172. DOI:10.1016/S0140-6736(07)61090-3

Moreira LMA, Matos MA, Schipper PP. Co-occurence of Achondroplasia and Down syndrome: Genotype/phenotype association. Birth Defects Res A Clin Mol Teratol 2010; 88: 228-231. DOI:10.1002/bdra.20653

Boaron, LC, Chong-Silva, DC, Pinto, RL, et al. Complicações respiratórias na criança com mucopolissacaridose. Res Pediatr 2020; 10: 1-5. DOI:10.25060/residpediatr.2020v.10n1-52

Finer N, Garnett SP, Bruun JM. COVID-19 and obesity. Clin Obes 2020; DOI:10.1111/cob.12365

Cassidy SB, Schwartz S, Miller JL. Driscoll DJ. Prader-Willi syndrome. Genet Med 2012; 14: 10?26. DOI: 10.1038/gim.0b013e31822bead0

Tan HL, Urquhart DS. Respiratory Complications in Children with Prader Willi Syndrome. Paediatr Respir Rev. 2017; 22:52?59. DOI: 10.1016/j.prrv.2016.08.002

Schrander-Stumpel CT, Curfs LM, Sastrowijoto P, et al. Prader-Willi syndrome: causes of death in an international series of 27 cases. Am J Med Genet A. 2004; 124A: 333?338. DOI:10.1002/ajmg.a.20371

Denadai R., Lo LJ. Teleconsultation-mediated nasoalveolar molding therapy for babies with cleft lip/palate during the COVID-19 outbreak: Implementing change at pandemic speed [published online ahead of print, 2020 May 15]. J Plast Reconstr Aesthet Surg 2020; DOI: 10.1016/j.bjps.2020.05.005

Iwasaki T, Suga H, Minami-Yanagisawa A, et al. Upper airway in children with unilateral cleft lip and palate evaluated with computational fluid dynamics. Am J Orthod Dentofacial Orthop. 2019; 156: 257?265. DOI: 10.1016/j.ajodo.2018.09.013

Hsieh ST, Woo AS. Pierre Robin Sequence. Clin Plast Surg 2019; 46: 249?259. DOI: 10.1016/j.cps.2018.11.010

Hagebeuk EE, Bijlmer RP, Koelman JH, Poll-The BT. Respiratory disturbances in rett syndrome: don't forget to evaluate upper airway obstruction. J Child Neurol 2012; 27: 888?892. DOI:10.1177/0883073811429859

Soares JA, Barboza MAI, Croti, UH, et al. Distúrbios respiratórios em crianças com síndrome de Down. Arq. Cienc. Sai 2004; 11: 230-233.

Espinosa, JM, COVID-19 and Down syndrome: A perfect storm? Cell Reports Medicine 2020; 1: DOI: 10.1016/j.xcrm.2020.100019

Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. J Infect. 2020; 80: 607?613. DOI: 10.1016/j.jinf.2020.03.037

Colombo C, Burgel PR, Gartner S. et al. Impact of COVID-19 in people with Cystic fibrosis, Lancet Respir Med 2020; 8: e35-e36. DOI: 10.1016/S2213-2600(20)30177-6.

Marson FA, Bertuzzo CS, Hortencio TD, et al. The ACE gene D/I polymorphism as a modulator of severity of cystic fibrosis. BMC Pulm Med 2012; 12: 41. DOI:10.1186/1471-2466-12-41

Downloads

Published

2020-06-19

How to Cite

MOREIRA, L. M. de A.; SANTOS, R. M. dos. Patients with genetic disorders as risk group for COVID-19 / Pacientes com distúrbios genéticos como grupo de risco para COVID-19. Brazilian Journal of Health Review, [S. l.], v. 3, n. 3, p. 6658–6670, 2020. DOI: 10.34119/bjhrv3n3-209. Disponível em: https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/11934. Acesso em: 28 mar. 2024.

Issue

Section

Original Papers