O Genótipo CCR5?32 em pacientes infectados pelo HIV candidatos à transplante de medula / The CCR5?32 Genotype in HIV-infected patients who are candidates for bone marrow transplantation

Authors

  • Daniel Fernandes da Silva
  • Maria Francisca Breve Cardoso Monteiro
  • Guilherme Junio Pinheiro
  • Judith Aparecida Trevisan
  • Anna Maly de Leão e Neves Eduardo
  • Erica Carine Campos Caldas Rosa

DOI:

https://doi.org/10.34119/bjhrv3n3-089

Keywords:

“CCR5”, “CCR5?32”, “HIV”, “epidemiologia”, Inflamação”, “Diagnósticos” e “transplante de células-tronco”

Abstract

Estudos mostram que a interação do HIV com os receptores e correceptores presentes em suas células-alvo pode ser prejudicada devido uma mutação presente em uma pequena parcela da população mundial, na qual o gene que codifica os receptores de quimiocina CCR5 sofrem uma deleção de 32 pares de base. Quando o vírus entra em contato com um indivíduo homozigoto para o gene CCR5?32 (?32/ ?32), a sua integração na célula é impedida. Nesse caso, o sujeito apresenta uma resistência para a infecção. O artigo tem como objetivo apresentar o impacto dessa mutação em candidatos ao transplante de medula óssea que são infectados pelo vírus do HIV. Avaliando dois casos de remissão de carga viral, descritos em literatura, sem uso do tratamento antirretroviral, onde os pacientes, que apresentavam neoplasias malignas para as células hematopoiéticas, foram submetidos a transplantes de medula onde os doadores eram homozigotos para a mutação ?32. Obteve-se como conclusão, que a mutação CCR5D32 implica em novos métodos de possíveis tratamentos para o HIV.

References

ALLEN, A. G. et al. Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection. Front Microbiol, v.9, n.2940, 2018-December-17, 2018.

ALLERS, K. et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood, v.117, n.10, p.2791-9, Mar 10, 2011.

AMMARANOND, P. et al. HIV immune escape at an immunodominant epitope in HLA-B*27-positive individuals predicts viral load outcome. J Immunol, v.186, n.1, p.479-88, Jan 1, 2011.

ANISENKO, A. N. et al. A qPCR assay for measuring the post-integrational DNA repair in HIV-1 replication. J Virol Methods, v.262, p.12-19, Dec, 2018.

BARRETT, W. L.;CALLAHAN, T. D.; ORKIN, B. A. Perianal manifestations of human immunodeficiency virus infection: experience with 260 patients. Dis Colon Rectum, v.41, n.5, p.606-11; discussion 611-2, May, 1998.

BARRETTA, L. M. et al. Complicações de cateter venoso central em pacientes transplantados com células-tronco hematopoiéticas em um serviço especializado. Rev. Latino-Am. Enfermagem www.eerp.usp.br/rlae 24:e2698 2016

BELL, S. A. et al. HIV pre-test information, discussion or counselling? A review of guidance relevant to the WHO European Region. Int J STD AIDS, v.27, n.2, p.97-104, Feb, 2016.

BRASIL. MINISTÉRIO DA SAÚDE. SECRETARIA DE VIGILÂNCIA EM SAÚDE. DEPARTAMENTO DE VIGILÂNCIA, P. E. C. D. I.; SEXUALMENTE TRANSMISSÍVEIS, D. H. A. E. D. H. V. Manual Técnico para o Diagnóstico da Infecção pelo HIV em Adultos e Crianças / Ministério da Saúde, Secretaria de Vigilância em Saúdes. D. D. V. , Prevenção E Controle Das Infecções Sexualmente Transmissíveis, Do Hiv/Aids E Das e H. Virais. Brasília :: Ministério da Saúde: 149 p p. 2016

BUNNIK, E. M. et al. Adaptation of HIV-1 envelope gp120 to humoral immunity at a population level. Nat Med, v.16, n.9, p.995-7, Sep, 2010.

CARVALHO, C. et al. CCR5-Delta32: implications in SLE development. Int J Immunogenet, v.41, n.3, p.236-41, Jun, 2014.

CENTERS FOR DISEASE, C. Human T-cell leukemia virus infection in patients with acquired immune deficiency syndrome: preliminary observations. MMWR Morb Mortal Wkly Rep, v.32, n.18, p.233-4, May 13, 1983.

CHIU, W. et al. Precision of a multi-level, multi-analyte external assayed quality control for molecular diagnostics platforms monitoring viral load of bloodborne pathogens. Bio-Rad Laboratories. Irvine, CA.:

CONTROL, C. F. D. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recomm Rep, v.41, n.RR-17, p.1-19, Dec 18, 1992.

CRADICK, T. J. et al. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res, v.41, n.20, p.9584-92, Nov, 2013.

DALGLEISH, A. G. et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature, v.312, n.5996, p.763-767, 1984/12/01, 1984.

DE SILVA FEELIXGE, H. S. et al. CRISPR/Cas9 and Genome Editing for Viral Disease-Is Resistance Futile? ACS Infect Dis, v.4, n.6, p.871-880, Jun 8, 2018.

DENG, H. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature, v.381, n.6584, p.661-6, Jun 20, 1996. DEPARTAMENTO DE VIGILÂNCIA, P. E. C. D. I. S. T., DO HIV/AIDS E DAS HEPATITES VIRAIS, DA SECRETARIA DE VIGILÂNCIA EM SAÚDE, DO MINISTÉRIO DA SAÚDE (DIAHV/SVS/MS),. Boletim de Aids e DST HIV/Aids. M. D. S. . 2018

DERAKHSHANI, M. et al. Strategies for elevating hematopoietic stem cells expansion and engraftment capacity. Life Sci, p.116598, Jun 24, 2019.

DIAZ, F. J. et al. Frequency of CCR5 delta-32 mutation in human immunodeficiency virus (HIV)-seropositive and HIV-exposed seronegative individuals and in general population of Medellin, Colombia. Mem Inst Oswaldo Cruz, v.95, n.2, p.237-42, Mar-Apr, 2000.

DRAGIC, T. et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature, v.381, n.6584, p.667-73, Jun 20, 1996.

FALKENHAGEN, A. et al. A novel gene therapy strategy using secreted multifunctional anti-HIV proteins to confer protection to gene-modified and unmodified target cells. Gene Ther, v.21, p.175, 12/05/online, 2013.

FERREIRA, M. H. et al. Association of oral toxicity and taste changes during hematopoietic stem cell transplantation: a preliminary study. Support Care Cancer, Jun 24, 2019.

FINE, E. J. et al. Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Sci Rep, v.5, p.10777, Jul 1, 2015.

FORD, N. et al. The future role of CD4 cell count for monitoring antiretroviral therapy. Lancet Infect Dis, v.15, n.2, p.241-7, Feb, 2015.

GARRED, P. et al. Dual effect of CCR5 delta 32 gene deletion in HIV-1-infected patients. Copenhagen AIDS Study Group. Lancet, v.349, n.9069, p.1884, Jun 28, 1997.

GORDON, S. N. et al. Disruption of intestinal CD4+ T cell homeostasis is a key marker of systemic CD4+ T cell activation in HIV-infected individuals. J Immunol, v.185, n.9, p.5169-79, Nov 1, 2010.

GRANELLI-PIPERNO, A. et al. Efficient interaction of HIV-1 with purified dendritic cells via multiple chemokine coreceptors. J Exp Med, v.184, n.6, p.2433-8, Dec 1, 1996.

GUAN, Y. The first structure of HIV-1 gp120 with CD4 and CCR5 receptors. Cell Biosci, v.9, p.2, 2019.

GUERREIRO, R.;SANTOS-COSTA, Q.; AZEVEDO-PEREIRA, J. M. As quimiocinas e os seus receptores. Acta Med Port, v.24, p.967-976, 2011.

GUPTA, R. K. et al. HIV-1 remission following CCR5?32/?32 haematopoietic stem-cell transplantation. Nature, v.568, n.7751, p.244-248, 2019/04/01, 2019.

GURYANOV, I. et al. Modeling interaction between gp120 HIV protein and CCR5 receptor. J Pept Sci, v.25, n.2, p.e3142, Feb, 2019.

HESS, G. et al. Diagnosis of human immunodeficiency virus (HIV) infection: multicenter evaluation of a newly developed anti-HIV 1 and 2 enzyme immunoassay. J Clin Microbiol, v.32, n.2, p.403-6, Feb, 1994.

HOU, P. et al. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep, v.5, p.15577, Oct 20, 2015.

HUSAIN, S. et al. First report of a healthy Indian heterozygous for delta 32 mutant of HIV-1 co-receptor-CCR5 gene. Gene, v.207, n.2, p.141-7, Jan 30, 1998.

HUTTER, G. et al. CCR5 Targeted Cell Therapy for HIV and Prevention of Viral Escape. Viruses, v.7, n.8, p.4186-203, Jul 27, 2015.

HUTTER, G. et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med, v.360, n.7, p.692-8, Feb 12, 2009.

KANG, H. et al. CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus. Mol Ther Nucleic Acids, v.4, p.e268, Dec 15, 2015.

KITAYAMA, N. et al. CCR4 and CCR5 expression in a case of subcutaneous panniculitis-like T-cell lymphoma. Eur J Dermatol, v.27, n.4, p.414-415, Aug 1, 2017.

KOUJAH, L.;SHUKLA, D.; NAQVI, A. R. CRISPR-Cas based targeting of host and viral genes as an antiviral strategy. Semin Cell Dev Biol, Apr 8, 2019.

LI, C. et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol, v.96, n.8, p.2381-93, Aug, 2015.

LIU, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell, v.86, n.3, p.367-77, Aug 9, 1996.

LIU, Z. et al. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4(+) T cells from HIV-1 infection. Cell Biosci, v.7, p.47, 2017.

MANNHALTER, J. W. et al. Immunization of chimpanzees with recombinant gp160, but not infection with human immunodeficiency virus type 1, induces envelope-specific Th1 memory cells. J Infect Dis, v.171, n.2, p.437-40, Feb, 1995.

MARQUES, A. C. B. et al. Hematopoietic stem cell transplantation and quality of life during the first year of treatment. Rev. Latino-Am. Enfermagem www.eerp.usp.br/rlae. 26:e3065 2018

MELIK-PARSADANIANTZ, S.; ROSTENE, W. Chemokines and neuromodulation. J Neuroimmunol, v.198, n.1-2, p.62-8, Jul 31, 2008.

MILLER, R. F. et al. Seasonal variation in mortality of Pneumocystis jirovecii pneumonia in HIV-infected patients. Int J STD AIDS, v.21, n.7, p.497-503, Jul, 2010.

MONTAGNIER, L. Lymphadenopathy-associated virus: from molecular biology to pathogenicity. Ann Intern Med, v.103, n.5, p.689-93, Nov, 1985.

MONTAGNIER, L. et al. Lymphadenopathy associated virus and its etiological role in AIDS. Princess Takamatsu Symp, v.15, p.319-31, 1984.

MOTTA, P. et al. [Frequency of the mutated allele of CCR-5 receptor in HIV-1 positive and negative individuals in the Province of Chaco]. Medicina (B Aires), v.60, n.4, p.431-4, 2000.

OWEN, W. Schematic of how CCR5 co-receptor works courtesy University of California Santa Barbara. Ecology of Disease Class: The Black Death and HIV resistance? Http://Eemb40.Blogspot.Com/2011/01/Black-Death-and-Hiv-Resistance.Html 2011

PALOMINO , D. C. T.; MARTI, L. C. Quimiocinas e imunidade. Einstein (São Paulo). 13 2017

PAVLOVIC, M. et al. (RT)-qPCR for detection of and differentiation between RNA and DNA of HIV-1-based lentiviral vectors. Hum Gene Ther Methods, Jul 27, 2017.

PAXTON, W. A. et al. The beta-chemokines, HIV type 1 second receptors, and exposed uninfected persons. AIDS Res Hum Retroviruses, v.12, n.13, p.1203-7, Sep 1, 1996.

PAXTON, W. A. et al. Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat Med, v.2, n.4, p.412-7, Apr, 1996.

PETERS, K. M. et al. Effect of Sacral Neuromodulation on Outcome Measures and Urine Chemokines in Interstitial Cystitis/Painful Bladder Syndrome Patients. Low Urin Tract Symptoms, v.7, n.2, p.77-83, May, 2015.

PIOT, P. et al. [AIDS and human immunodeficiency virus infection in Africa]. Verh K Acad Geneeskd Belg, v.50, n.6, p.519-60, 1988.

QUINN, T. C. et al. Serologic and immunologic studies in patients with AIDS in North America and Africa. The potential role of infectious agents as cofactors in human immunodeficiency virus infection. JAMA, v.257, n.19, p.2617-21, May 15, 1987.

ROSENBERG, N. E. et al. How can we better identify early HIV infections? Curr Opin HIV AIDS, v.10, n.1, p.61-8, Jan, 2015.

SAAYMAN, S. et al. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther, v.15, n.6, p.819-30, Jun, 2015.

SAÚDE, S. D. V. À. Boletim Epidemiológico HIV/AIDS e outras Infecções Sexualmente Transmissíveis-IS. S. D. S.-. Df. DF: Secretaria de Saúde nº 01 2018

SERETI, I.;RODGER, A. J.; FRENCH, M. A. Biomarkers in immune reconstitution inflammatory syndrome: signals from pathogenesis. Curr Opin HIV AIDS, v.5, n.6, p.504-10, Nov, 2010.

SHIELS, M. S. et al. HIV Infection, Immunosuppression, and Age at Diagnosis of Non-AIDS-Defining Cancers. Clin Infect Dis, v.64, n.4, p.468-475, Feb 15, 2017.

SHIELS, M. S. et al. Cancer burden in the HIV-infected population in the United States. J Natl Cancer Inst, v.103, n.9, p.753-62, May 4, 2011.

SMITH, M. W. et al. CCR5-delta 32 gene deletion in HIV-1 infected patients. Lancet, v.350, n.9079, p.741; author reply 742, Sep 6, 1997.

SOLLOCH, U. V. et al. Frequencies of gene variant CCR5-Delta32 in 87 countries based on next-generation sequencing of 1.3 million individuals sampled from 3 national DKMS donor centers. Hum Immunol, v.78, n.11-12, p.710-717, Nov, 2017.

TEO, I. A. et al. Reliable and reproducible LightCycler qPCR for HIV-1 DNA 2-LTR circles. J Immunol Methods, v.270, n.1, p.109-18, Dec 1, 2002.

VANDEVELDE, M. et al. ADA, a potential anti-HIV drug. AIDS Res Hum Retroviruses, v.12, n.7, p.567-8, May 1, 1996.

VARGAS, A. E. et al. Frequency of CCR5D32 in Brazilian populations. Braz J Med Biol Res. Ribeirão Preto. 39 2006

VERHEYEN, J. et al. Rapid Rebound of a Preexisting CXCR4-tropic Human Immunodeficiency Virus Variant After Allogeneic Transplantation With CCR5 Delta32 Homozygous Stem Cells. Clin Infect Dis, v.68, n.4, p.684-687, Feb 1, 2019.

WALLIS, R. S. et al. Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet, v.375, n.9729, p.1920-37, May 29, 2010.

WANG, B. et al. CCR5-delta 32 gene deletion in HIV-1 infected patients. Lancet, v.350, n.9079, p.742, Sep 6, 1997.

WANG, W. et al. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One, v.9, n.12, p.e115987, 2014.

WANG, Y. J. et al. Assessment of the susceptibility of mutant HIV-1 to antiviral agents. J Virol Methods, v.165, n.2, p.230-7, May, 2010.

WHO. Consolidated Guidelines on HIV Testing Services:. In: (Ed.). Consolidated Guidelines on HIV Testing Services: 5Cs: Consent, Confidentiality, Counselling, Correct Results and Connection 2015. Geneva, 2015. Consolidated Guidelines on HIV Testing Services:. (WHO Guidelines Approved by the Guidelines Review Committee)

YODER, K. E.; FISHEL, R. Real-time quantitative PCR and fast QPCR have similar sensitivity and accuracy with HIV cDNA late reverse transcripts and 2-LTR circles. J Virol Methods, v.153, n.2, p.253-6, Nov, 2008.

YU, S. et al. Simultaneous Knockout of CXCR4 and CCR5 Genes in CD4+ T Cells via CRISPR/Cas9 Confers Resistance to Both X4- and R5-Tropic Human Immunodeficiency Virus Type 1 Infection. Hum Gene Ther, v.29, n.1, p.51-67, Jan, 2018.

ZHANG, Y. et al. CRISPR-mediated activation of endogenous BST-2/tetherin expression inhibits wild-type HIV-1 production. Sci Rep, v.9, n.1, p.3134, Feb 28, 2019.

Published

2020-05-26

How to Cite

SILVA, D. F. da; MONTEIRO, M. F. B. C.; PINHEIRO, G. J.; TREVISAN, J. A.; EDUARDO, A. M. de L. e N.; ROSA, E. C. C. C. O Genótipo CCR5?32 em pacientes infectados pelo HIV candidatos à transplante de medula / The CCR5?32 Genotype in HIV-infected patients who are candidates for bone marrow transplantation. Brazilian Journal of Health Review, [S. l.], v. 3, n. 3, p. 5082–5106, 2020. DOI: 10.34119/bjhrv3n3-089. Disponível em: https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/10613. Acesso em: 29 mar. 2024.

Issue

Section

Original Papers