Identifying and detecting Entomopathogenic fungi using Surface-enhanced Raman spectroscopy / Identificação e detecção de fungos entomopatogênicos utilizando Superficie-enhanced Raman espalhamento

Javier Christian Ramirez Perez, Tatiana Alves dos Reis, Marcia de Almeida Rizzutto


In the natural ecosystem, fungal entomopathogens are the most efficient biocontrol agents against insect pests. In this study we offer an alternative for conventional fungal diagnostic, Surface-enhanced Raman spectroscopy (SERS) technique combine with principal component analysis (PCA) for detection and identification three entomopathogenic fungi, namely, IBCB 66 Beauveria bassiana, IBCB 130 Isaria fumosorosea, and IBCB 425 Metarhizium anisopliae. Using a simple preparation approach, highly active silver nanoparticles suitable for detecting complex biomolecules were produced for application in the SERS technique. Entomopathogens fungi produced highly enhanced and reproducible Raman signals based on their biochemical composition due to the high density of hot spots at the confluence of silver nano-aggregates, allowing the three entomopathogens species to be differentiated in the SERS spectrum fingerprint region, 550-1700 cm-1. The SERS method, along with PCA analysis, accounted for over 99 % of total variance and allowed for very high probability discrimination between the three entomopathogens, allowing taxonomic affiliation to be determined in a short period of time.  These findings suggest that the SERS methodology can be used to develop a new, fast, accurate, and cost-effective diagnostic method for fungal entomopathogens.


SERS, entomopathogenic fungi, Metarhizium anisopliae, Beauveria bassiana, Isaria fumosorosea, detection.

Texto completo:



Almeida, J.E.M.; Batista F.A.( 2006). Controle biológico da cigarrinha-da-raiz da canade-açúcar com o fungo Metarhizium anisopliae. Boletim Técnico do Instituto Biológico, São Paulo, 19pp., 2006.

Alves, MD., Monteiro, CA., Machado ACR., Yoshida,L.(2010). Efficiency of entomopathogenic fungi in the controlo f eggs and larvae of the horn fly haematobia irritants (Dipteria:Muscidae). Veterany Parasitology. 167, 62-66.

Alves, S.B. Fungus entomopathogenicos. (1980) In: Alves, S.B. (Ed.) Controle microbiano de insectos. Piraciacaba: FEALQ, p 289-380.

Alves, S.B. Lopes, R.B. (2008). Controle microbiano de pragas na America Latina, Avancos e Desafios, Piraciacaba: 414p.

Angel-Sahagun, C.A., Lezama-Gutierrez, R., Molina-Ochoa, J., Galindo-Velasco, E., Lopez-Edwards, M., Rebolledo-Dominguez, O., Cruz-Vasquez, C., Reyes-Velasquez, W.P., Skoda, S.R., Foster, J.E.(2005). Susceptibility of biological stages of the horn fly, Haematobia irritans, to entomopathogenic fungi (Hyphomycetes). J. Insect. Sci. 5, 50.

Banerjee, S., Loza, K., Meyer-Zaika, W., Prymak, O., Epple, M. (2014). Structural Evolution of Silver Nanoparticles during Wet-Chemical Synthesis, Chemistry of Materials,26 ( 2),. 951-957.

Chen, LY., Mungroo, N., Daikura, L., Neethirajan, S. (2015). Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids, J.Nanobiotechnology, 13, 45-53.

Clifton, E.H., Castrillo, L.A., Gryganskyi, A., Hajek, A.E.(2019). A pair of native fungal pathogens drives decline of a new invasive herbivore. Proc. Natl. Acad. Sci. Unit.States Am. 116, 9178–9180.

Cowcher, DP., Xu, Y., Goodacre, R. (2013). Portable quantitative detection of Bacillus bacterial spores using Surface-enhanced Raman scattering. Anal.Chem, 85 (6),3297-3302.

De Gelder J., De Gussem K., Vandenabeele, P., Moens L. (2007). Reference database of Raman spectra of biological molecules. J. of Raman Spectroscopy, 38, 1133-1147.

De Gussem, K., Vnadenabeele, P., Verbeken A., Moens L. (2005). Raman Spectroscopic study of Lactarius spores (Russulales, Fungi), J. Spectrochimica Acta Part A, 61, 2896-2908.

De Gussem, K., Vnadenabeele, P., Verbeken A., Moens L.(2007). Chemotaxonomical identification of spores of macrofungi: possibilities of Raman spectroscopy, Anal Bioanal Chem, 387, 2823-2832.

Dina NE., Colnita, A., Leopold, N., Haisch C.(2017). Rapid single-cell detection and identification of bacteria by using surfacce-enhanced Raman spectroscopy, Procidia Technology, 27, 203-207

Efrima S & L.Zeiri. 2009. Understanding SERS of Bacteria, J. Raman Spectros., 40, 277-288.

Gallo, D. (2002). Etimologia Agricola, Piraciacaba,Ed. FEALQ, 920 p.

Huang W. E., Li, M., Jarvis R.M., Giidacare, R., and Banwart, S. (2010). Shining light on the microbial world: the application of Raman microspectroscopy, Advances in Applied Microbiology, (70), 5.

Imoulan, A., Alaoui, A., El Meziane, A.(2011). Natural occurrence of soil-borne entomopathogenic fungi in the Moroccan Endemic forest of Argania spinosa and their pathogenicity to Ceratitis capitata. World J. Microbiol. Biotechnol. 27, 2619–2628.

Jitendra, M., Kiran, D., Ambika, K., Priya, S., Neha, K., Sakshi, D. (2012). Biomass

production of entomopathogenic fungi using various agro products in Kota region,India. Int. Res. J. Biol. Sci. 1, 12–16.

Karaman M, Yazici, MM., Sahin F., Culha, M. (2008). Convective assembly of bacateria for surface-enhanced Raman scattering. Langmuir, 24 (3), 849-901.

Lee, W.W., Shin, T.Y., Bae, S.M., Woo, S.D.(2015). Screening and evaluation of entomopathogenic fungi against the green peach aphid, Myzus persicae, using

multiple tools. J. Asia Pac. Entomol. 18, 607–615.

Lemma T., Saliniemi A., Hynninen,V., Hytonen, VP., Topari, JJ. (2016). SERS detection of cell surface and intracellular components of microorganisms using nano-aggregated Ag substrate, Vibrational Spectroscopy, 83,36-45.

Le Ru, E.C., Blackie, E., Meyer M., Etchegoin PG.(2007). Surface enhanced Raman scattering enhancement factors: A comprehensive study, J. Phys. Chem., 111, 13794-13803.

Li, A.Y., Guerrero, F.D., Pruett, H.( 2007). Involvement of esterases in diazinon resistance and biphasic evects of piperonyl butoxide on diazinon toxicity to Haematobia irritans irritans (Diptera: Muscidae). Pestic. Biochem. Physiol. 87, 147–155.

Lohmeyer, K.H., Miller, J.A.(2006). Pathogenicity of three formulations of entomopathogenic fungi for control of adult Haematobia irritans (Diptera-Muscidae). J. Econ. Entomol. 99, 1943–1947.

Malekan, N., Hatami, B., Ebadi, R., Akhavan, A., Radjabi, R.(2015). Evaluation of

entomopathogenic fungi Beauveria bassiana and Lecanicillium muscarium on

different nymphal stages of greenhouse whitefly Trialeurodes vaporariorum in

greenhouse conditions. Biharean Biol. 9, 108–112.

Mochi, D.A., Monteiro, A.C., Bortoli de, S.A., Doria, H.O.S., Barbosa, J.C.(2006). Pathogenicity of Metarhizium anisopliae for Ceratitis capitata (Wied.) (Diptera: Tephritidae) in soil with different pesticides. Neotrop. Entomol. 35, 382–389.

Mohacek-Grosev V., Bozac, R., Puppels, G. (2001). Vibrational spectroscopy characteristization of wild growing mushrooms and toadstools. Spectroschimica Acta Part A, 57, 2815-2829.

Matsumoto, F., Ishikawa, M., Nishio, K., Masuda, H. 2005. Optical properties of long range-ordered high-density gold nanodot arrays prepared using anodic porous alumina, Chem. Lett, 34 (4),508-509.

Malequin, K, Kirschner, C., Choo-Smith, L.P., van den Braak, N., Endtz, H., Naumann, D., Puppels, G.J. (2002). Identification of medically relevant microorganisms by vibrational spectroscopy, J. of Microbiological methods, 51, 255-271.

Nja G., Bouvrette P., Hrapvic S., Luong JH. (2007). Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. The Royal Society of Chemistry, Analyst, 132, 679-686.

Oremus, G., Guerrero, F.D., Alison Jr., M.W., Kimball, M.M., Kim, J.H., Foil, L.D. (2006). Effects of mid-season avermectin treatments on pyrethroid resistance in horn fly (Diptera: Muscidae) populations at three locations in Louisiana. Vet. Parasitol. 141, 156–164.

Oliveira, C. L. P., Monteiro, A. M. Neto, A. M. F. (2014). Structural Modifications and Clustering of Low-Density Lipoproteins in Solution Induced by Heating, Brazilian Journal of Physics, 44 (6), 753-764.

Pan, T-t. , Sun D-W.,P., Hongbin, Wei, Q., Xiao, X., Wang, Q-J. (2017). Detection of A. alternata from pear juice using surface-enhanced Raman spectroscopy based siver nanodots array, Journal of Food Engineering, 215, 147-155.

Prusinkiewicz, M., Farazkhorasani, Dynes JJ, Wang, J., Gough K., Kaminsky, S.(2012). Prof-of-principle for SERS imaging of Aspergillus nidulans hyphae ising in vivo synthesis of gold nanoparticles. Analyst, 137, 4934-4942.

Pietzak, K., Glinska, S., Gapinska, M., Ruman, T., Nowak, A., Aydin, E., Gutarowska, B. (2016). Silver nanoparticles: a mechanism of action of moulds, Royal Society of Chemistry Metallomics, 13, 7-11

Ramirez-Perez J.C. Aerobic Biodegradation Kinetics of Solid Organic Wastes, ISBN 978-3-659-46135-4, Editor LAMBERT ACADEMIC PUBLISHING, Saabrücken, Germany, November, 2013.

Rocha, LCD. (2008). Selectividade fisiológica de insecticidas utilizados em cultura cafeeira sobre os predadores Chrysoperla externa (Hagen 1861) (Neurotera:Chrysopidae) e Cryptolaemos montrouzireri mulsant, 1853 (Coleoptera:Coccinellidae). P133 (Doctral thesis UFV), Lavras.

Wang, H., Qiao, X., Chen, J.; Ding, S. (2005). Preparation of silver nanoparticles by chemical reduction method, Coll. Surf. A: Physicochem. Eng. Aspects , 256, 111−115.

Yang, X., Gu C., Quian F., Li Y., Zhang J.Z. (2011). Highly sensitive detection of proteins and bacteria in aqueous solutions using Surface-Enhanced Raman Scattering and optical fibers. Anal.Chem. 83 (15), 5888-5894.

Zhang, L., Xu, JJ., Mi , L., Gong H., Jung ,S.Y., Yu QM. (2012). Multifunctional magnetic plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS. Biosens Bioelectron, 31 (1), 130-136.



  • Não há apontamentos.